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Abstract— One of the challenges in deploying Micro Aerial
Vehicless (MAVs) in unknown environments is the need of
securing for collision-free paths with static and dynamic
obstacles. This article proposes a monocular vision-based
reactive planner for MAVs obstacle avoidance. The avoidance
scheme is structured around a Convolution Neural Network
(CNN) for object detection and classification (You Only Lock
Once (YOLO)), used to identify the bounding box of the
objects of interest in the image plane. Moreover, the YOLO
is combined with a Kalman filter to robustify the object
tracking, in case of losing the boundary boxes, by estimating
their position and providing a fixed rate estimation. Since
MAVs are fast and agile platforms, the object tracking should
be performed in real-time for the collision avoidance. By pro-
cessing the information of the bounding boxes with the image
field of view and applying trigonometry operations, the pixel
coordinates of the object are translated to heading commands,
which results to a collision free maneuver. The efficacy of
the proposed scheme has been extensively evaluated in the
Gazebo simulation environment, as well as in experimental
evaluations with a MAV equipped with a monocular camera.

I. Introduction
Lately, there has been an increase in the deploy-

ment of the Micro Aerial Vehicless (MAVs) in variety
applications [1], such as aerial photography [2], [3],
infrastructure safety inspection [4], underground mine
exploration [5], [6], and delivery of supplies [7].

One of the major challenges, in such application
scenarios, is the need to guarantee collision free paths
for the MAV navigation, especially in environments that
are partially or totally unknown, with the existence
of limited or tight open spaces and static or dynamic
obstacles, such as humans that requires a dexterous
and fine tuned obstacle detection and avoidance scheme.
This article proposes a novel scheme based on the
Convolution Neural Network (CNN) to detect obstacles
by monocular camera. As it will be demonstrated, based
on the estimated relative distance and relative speed of
the obstacles, the MAV heading is corrected to avoid
possible collisions.

A. Background and Motivation
In the related literature, there have been multiple

approaches for the detection and avoidance of objects
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with a monocular camera. In [8] and [9], the You Only
Lock Once (YOLO) object detection algorithm has been
proposed. In these approaches, the position in a 3D
coordinate system and the overall size of the objects are
not considered. In order to obtain this information, extra
steps, such as the multi view approach [10], [11] or CNN
is required. The multi view approach requires for an ego-
motion to get multiple views to estimate the distance to
different objects, while it fails if the object has moved
during the ego-motion, thus the overall approach it not
suitable for obstacle avoidance in dynamic environments.
The CNN approaches are computationally expensive to
obtain the depth and merging it with object detection
methods, while usually will not result to a real time
performance. For this case, there exist methods that
combine the detection and the depth estimation for
obstacle avoidance [12], [13], however these methods are
mainly designed and tuned for a specific task, such as
obstacle avoidance of power transmission lines [12] that
results to a not general solution for the MAV navigation.

In the related literature, there are have been many
multiple works that consider methods for solving the
combined path-planning and obstacle avoidance problem
and that have successfully been utilized for MAV’s[14],
[15]. However most of these methods such as the po-
tential fields [16], [17], or the dynamic graph search
methods like A⋆ [18] or MSA* [19] consider to know the
position of the obstacles and mainly have been studied
in environments with static obstacles.

B. Contributions
The main contribution of this article is the devel-

opment of the reactive planner for obstacle avoidance
for the MAVs navigation, based on the forward facing
monocular camera. The specific architecture is based on
the combination of a CNN detection method (YOLO)
with a bounding box processing for correcting the MAV
heading commands and thus enabling proper collision
avoidance. On top of the object detector, a Kalman filter
is implemented to track boxes in the case of loosing them
from object detection by estimating the position and by
increasing the tracking rate of the object, in order to
allow fast bounding box calculations, a capability that is
critical for the MAV navigation. The second contribution
stems from developing a scheme that is able to provide
a weighted risk proposal for all objects in the scene. As
such, based on the highest calculated risk of collision,
the identified bounding boxes, in pixel coordinates, are
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converted to new heading command using trigonometry.
Finally, the developed architecture has been evaluated

in both simulations and experimental studies, where it
has been extensively demonstrated the effectiveness in
the evaluated scenarios with either static or dynamic
pedestrians.

C. Outline
The rest of the article is structured as follows. Section

II discusses the proposed methodology for vision based
reactive heading regulation, while Section III presents
the experimental results performed using the proposed
architecture. Finally conclusions are stated in Section V.

II. Vision Based Reactive Planner
Figure 1 depicts the block diagram of the proposed

structure, where it can be observed that two components
that consist of the reactive planner. The detection and
tracking component for the obstacles has the role to
transmit, the corresponding bounding boxes B of the
tracked obstacles, to the obstacle avoidance component,
where the avoidance policy is applied. Moreover, the
high level planner is providing the waypoints to the
Obstacle avoidance, where a suggested heading Bαs is
calculated and is sent to the high level planner. The high
level planner is a PD (proportional-derivative) controller,
applied on the error between the current heading Bαc and
Bαs. In the sequel, the output is sent to the high level
controller in order to generate the corresponding thrust,
roll an pitch commands for the cascade connected low
level controller. In the last step, the low level controller
generates the proper motor commands for the MAV.

Fig. 1: An overall structure of the proposed method.

Three different frames are considered, as depicted in
Figure 2. The inertial frame I, the body fixed frame B,
which is fixed on the MAV with Bx, and the camera frame
C. The relation between C and B has a fixed rotation
as:

BRC =

 0 0 1
−1 0 0
0 −1 0

 (1)

A. Detection and tracking
The objects to be avoided are detected using YOLO

[9] (the authors pre-trained wights were used). YOLO

I

y

z

x

B
x

z

y
C x
z

y

Fig. 2: The coordinate frames used. I is the inertial frame,
B is the body fixed frame for the MAV, C is the camera
frame. C has a static relationship to B. Whiles B moves
relative to I.

gives bounding boxes as an output, including the cen-
ter position of the object C [

x y
]⊤, as well as the

height (Ch) and width (Cw) of the object, with all the
dimensions noted in pixels. In the sequel, the objects
are traced between the frames by using the Hungarian
algorithm [20], in combination with a Kalman filter [21].
The Kalman filter is used to predict the object’s next
position to improve the accuracy of the combinatorial
optimization Hungarian algorithm.

B. The obstacle avoidance method
1) Angle to obstacle: Object detection methods, like

YOLO [9] are able to return the position and size of the
detected objects in pixel coordinates Ccp. For correcting
the heading of the MAV, only the position of the obstacle
in 2D coordinate will be sufficient for generating the
heading command. In the pixel coordinate, the MAV
has an angle of α from its heading to each object and α
is zero when the object is in the center of the image. By
assuming a set of pixels, based on the resolution of the
camera, different α can be extracted for each pixel and
the pixel Field of View (FoV) Cpfov can be defined. The
sum of all the Cpfov on the horizontal plane is equal to
the camera’s FoV in the horizontal plain. By adding the
Cpfov’s of all the pixels, from the center of the image
till the pixel corresponding to the objects Ccp(x, y, 1), is
the α for that Ccp received. As such, the α between two
pixels can be calculated by:

pnr = pj − pi (2)
Cα =C pfovpnr, (3)

where Cpnr is the number of pixels between pixel i
(pi) and pixel j (pj). It should be highlighted that the
accuracy of the proposed method is highly dependent on
the resolution of the camera, while higher resolution re-
sults into more accurate angles. The formula to calculate
Cpfov is:

Cpfov =
Cwp

CIfov
, (4)

where Cwp is the image width in pixels and CIfov is
the image horizontal FoV. By using a cp, relative to the
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center pixel in the image, Ccp can be transformed into
B by BRC

Ccp.
2) Proximity to collision: In this article, the area of

the detected objects are used to obtain the time of
collision without knowledge of the distance d and the
relative speed of the objects. The area A of the detected
object’s B can be calculated (in pixels). By calculating
the area change ∆A between frames, a relative time of
arrival can be extracted. Since the objects grow in size,
when they come closer, the corresponding growing rate is
affected by both distance and speed. Closer objects that
move fast have a larger ∆A than objects that are far
away and are moving slow. This results to an estimation
of the objects that have a higher probability for the
collision and thus the MAV should avoid them earlier,
when compared to other obstacles in the environment.

3) Avoidance scheme: The avoidance method is im-
plemented by defining a waypoint W = I [x y z

]⊤.
In this case, Bαw is the yaw angel in B to the W. To
reach the W safely, the safest heading closest to the Bαw

should be chosen. In the case that there are no obstacles,
the Bαw is the best choise, at least when the travel d
is considered. But if there are obstacles in the way, the
heading that is safest and closest to Bαw may be chosen
(Bαs). The Bαs is calculated with a safety marginal
s. This is achieved by mapping the obstacles and the
free spaces on an risk array ψ, weighted with proximity
to collision (∆A) as presented in the Algorithm 1 and
denoted by. The ψ has the same length as the image
width in pixels wp, thus the Ccp for the Bs is equivalent
to the index’s in ψ. By finding the minimum sum in a
span of length 2s in ψ as presented in Algorithm 2:

min

j+2s∑
i=j

ψ[i]

Ccs = j + s can be calculated, thus it is the safest
heading found in pixel coordinates. In equation 3 is Ccs
transformed to Bαs. If there are many possibly spans that
have the same collision risk, the one with the heading,
closest to Bαw, be selected. This method is visualized
in Figure 3 and in Figure 4 where an actual frame is
visualized. By updating Bαs regularity, the MAV will
turn back towards the W when the obstacle disappears
from Bαw.

III. Simulation and Experimental Results
This Section describes the simulation and experimen-

tal evaluation of the proposed method, while a video
summary of the obtained results can be reached in the
following link 1.
Initially, the proposed method is evaluated in the

Gazebo simulation environment and in closed loop with
a MAV in a laboratory environment. In both cases, the
Parrot Bebop 2 [22] is used for the evaluation of the

1https://drive.google.com/file/d/136C2AU5uKKRjEaH-
niPfGdd-lMCilRIQ/view?usp=sharing

MAV

Waypoint

Obstacle

Bαw

Bαs

Risk array

White low = risk, black = high risk (∆A)
Safety marginal (s)

Red line = Bαw, green line = Bαs

Fig. 3: A schematic view of how the heading selection.

Fig. 4: A visualization of the MAV’s vision frame. The
light blue box is the detected bounding box. In the top
left corner of the bounding box can ∆A be seen. At
the bottom of the bounding box is the box’s unique ID
printed in dark blue. The green box to the left is the
Cαs. In this example, the Cαs is −0.5725 radians. And
Cαw is visualized with a green cross

Algorithm 1 Map bounding boxes to risk Array
Input: Bounding boxes
Output: Risk array ψ
1: ψ ← new array[wp : 0]
2: for all Bounding boxes as B do
3: for all B.Cpy − wp/2 to B.Cpy + wp/2 as i do
4: if B.∆A > ψ[i] then
5: ψ[i]← B.∆A
6: end if
7: end for
8: end for
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Algorithm 2 Find minimum span
The method waypointToPixels() is (3) in reverse given
an angle it returns the corresponding Ccp).
Input: Risk array ψ
Output: Safe heading Bαs

Requires: s
1: αs ← waypointToPixels()
2: min← 2s
3: for o← 0 : o < wp/2 : o← o+ 1 do
4: current←

∑waypointToPixels()+o+s
i=waypointToPixels()+o−s ψ[i]

5: if current < min then
6: αs ← o+waypointToPixels()
7: min← current
8: end if
9: current←

∑waypointToPixels()−o+s
i=waypointToPixels()−o−s ψ[i]

10: if current < min then
11: αs ←waypointToPixels()−o
12: min← current
13: end if
14: end for

proposed method. Parrot Bebop 2 weighs 0.5 kg, offering
25mins of flight time and it is equipped with a forward-
looking camera, optical flow and sonar sensor looking
down as depicted. The platform provides a WiFi link
and all the computations are performed on the ground
station computer, equipped with an Intel i7 processor
and a Nvidia GTX1060 graphics card, on which the
algorithm ran in 8Hz. The Bebop-Autonomy 2 is used
for the estimation of the states and controlling the
platform, while the heading of the MAV is corrected
based on the proposed method. The looking forward
camera horizontal FoV is 80◦. The images are still
slightly distorted, however this will not affect the overall
proposed method. The small distortion can be seen
around the edges in Figure 4, which is hard to spot
and it should be highlighted that the obstacles with a
higher probability for the collisions are usually not in
the edges of FoV.

A. Gazebo Simulations

In the simulation evaluations, a single pedestrian was
placed in front of the MAV. The goal set point for the
MAV is in the back of the pedestrian, where without the
correction of the heading, the collision is not avoidable.
Figure 5 depicts the movement of the MAV and the
location of the pedestrian.

Moreover, Figure 6 depicts the distance between the
MAV and a pedestrian in first case. As it can be
seen from the obtained results, the MAV successfully
avoids the collision and a minimum distance of 0.88m is
obtained.

2https://bebop-autonomy.readthedocs.io/
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Fig. 5: The obstacle avoidance path (black line) that the
MAV took when one pedestrian (red circle) was standing
still in the Bαw.
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Fig. 6: The distance to the colision d with one pedestrian
standing still. In this scenario, the minimum diastase
were 0.88m

B. Experimental Evaluation
1) MAV navigation with static obstacle: In the ex-

perimental evaluation, the same scenario, as in the
Gazebo simulations was considered. Figure 7 depicts
the sequence of the obtained images, from the forward
looking camera, while the MAV navigates to the desired
set point. The center of the green rectangle is the
direction of the generated heading command. As it can
be seen, the heading is corrected in a way that the
pedestrian in the pixel coordinates moves from the center
to the left, which results to a collision free navigation.

The distance between the MAV and the pedestrian is
depicted in Figure 8, where it is also observed that same
performance, as in the case of the simulation results, is
obtained and the minimum distance achieved was 0.87m,
between the pedestrian and MAV.
2) Time of collision with multiple dynamic obstacles:

In this case, it is assumed that the MAV is static and the
objects are moving towards the MAV. The main reason
of this scenario, is to evaluate the proposed approach for
detecting the time of the collision, based on the ∆A of
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Fig. 7: Sequential onboard images from the MAV, during the real flying test with one pedestrian standing still,
where the center of the green rectangle is the direction of the generated heading command.
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Fig. 8: The distance d between the MAV and the
pedestrian durign the experimental flying test, while the
pedestrian was standing still.

the objects. The accuracy of the ∆A is highly dependent
on the quality of the Bs precision. The Bs precision is
affected by both the detection algorithm YOLO and the
Kalman filter.

In Figure 10 it is possible to observe how the ∆A is
changing when two pedestrians approach a stationary
MAV. ∆A is generally small, in comparison to what it
could be in extreme cases, as depicted in Figure 10a.
The 0.5 steps occur when some part of the detected
pedestrian goes outside the image (a safety feature to
avoid dangerous behavior).

Figure 10b is a zoom-in on the first part of graph
(a). The pedestrians were standing still for about 16
frames, before they started to move. The pedestrians
that were standing still are not completely motionless,
and this results to small changes in ∆A. When the
pedestrians had started to move, there are many factors
that affect how the ∆A is changing. From the obtained
curves, it is possible to determine which pedestrian has
higher probability to reach to the MAV earlier and higher
chance of collision. The pedestrian in the left side of the
image (Pedesterian 1) has almost always a higher ∆A
and as a result it is the first one to reach the MAV.

IV. Discussion
A safety distance ≈ 0.87m is a rather small in most

cases, when compared to the 1m distance used for near-
collision [23]. When the pedestrian’s size is taken into

account, the real distance to a collision is closer to
0.5m. This distance is likely to be independent of the
pedestrian’s size, because the avoidance is based on the
edge of the detected obstacle.

The ∆A potential was not tested for scenarios with
multiple obstacles, so if ∆A and more areas with dense
population of pedestrians/obstacles should be consid-
ered. Figure 10 suggests that such effective operation
could be possible, however, this needs to be further
verified with future work and related experimentation.
To increase the passing safety distance, a memory could
be also considered that should track the past obstacles
that are outside the FoV. At the moment, it is only
the pedestrians that have been detected in this article
and therefore avoided. This means that any other type
of obstacles (walls for example) will not be avoided.
One challenge when addressing different objects is the
different size and the corresponding different impact on
∆A that this could have. This effect has been also noted
in the presented simulations as small pedestrians (e.g
children) is at higher risk to be collided with.

V. Conclusions
This work presented a vision-based reactive avoid-

ance planner focusing on performing heading avoidance
maneuvers. The method combined state-of-the-art CNN
object detection with Kalman filter for object tracking
purposes in order to accomplish a higher speed on
the object identification. The core component, of the
proposed architecture, relies on the translation of the
extracted bounding box on the image plane for the
heading commands of the aerial platform, by using the
camera properties and trigonometric operations. The
proposed scheme has been evaluated in the simulation
environment Gazebo, as well as in real experimentations
with the commercially available MAV Parrot Bebop 2.
In all the cases, the MAV successfully avoided collisions
with the pedestrians, based on the generated heading
commands.
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(a) Normalised area change ∆A from a test with two pedes-
trians walking towards the MAV from a slightly different
distance d.
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Fig. 10: A test of the calculated area change ∆A to show
how it changes when two pedestrians are waking towards
the MAV. The pedestrians started at slightly different
distance d. An image sequence related to the depicted
data set can be seen in Figure 9. The left pedestrian in
Figure 9 is the pedestrian 1.
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