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Abstract— This article presents an overall system architec-
ture for multi-robot coordination in a known environment.
The proposed framework is structured around a task allo-
cation mechanism that performs unlabeled multi-robot path
assignment informed by 3D path planning, while using a
nonlinear model predictive control(NMPC) for each unmanned
aerial vehicle (UAV) to navigate along its assigned path. More
specifically, at first a risk aware 3D path planner D∗

+ is applied
to calculate cost between each UAV agent and each target point.
Then the cost matrix related to the computed trajectories to
each goal is fed into the Hungarian Algorithm that solves the
assignment problem and generates the minimum total cost.
NMPC is implemented to control the UAV while satisfying
path following and input constraints. We evaluate the proposed
architecture in Gazebo simulation framework and the result
indicates UAVs are capable of approaching their assigned target
whilst avoiding collisions.

I. INTRODUCTION

Taking advantage of agility in three-dimensional space,
Unmanned Aerial Vehicles(UAVs) have shown influential
impact in many application aspects, including search and
rescue [1], infrastructure inspection [2], area mapping [3],
etc. For decades, one of the most popular areas of aerial
robotics is the case of multiple UAVs systems, which com-
mits to having a group of UAVs performimng some collective
behavior so as to improve efficiency and robustness. While
deploying a UAV fleet is an extremely complex problem,
which requires solving several sub-problems: (1) Task as-
signment problem, namely addressing the question of how
a set of tasks should be allocated to a set of robots so as
to achieve the overall system goals; (2) Coordination issue,
that is how the robots negotiate and coordinate; (3) Path
planning, finding trajectories for robots to complete the tasks;
(4) Control scheme, which enables robots follow its assigned
trajectory.

A. Related works

Considering the complexity of deploying multiple robotic
system, the assignment-planning problem is often decoupled
into two subproblems. The first subproblem is the multi-
robot task allocation (MRTA), an NP (non-deterministic
polynomial-time) hard optimization problem [4]. Mathemat-
ically, MRTA can be modeled as the optimal assignment
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problem (OAP) [5], or the multiple traveling salesman
problem (mTSP) [6]. Numerous methods have been de-
veloped to solve MRTA problems, mainly categorized in
optimization-based and market-based approaches. Belling-
ham [7] solved the task allocation problem using mixed in-
teger linear programming (MILP) solution and the proposed
solution performed well for a heterogeneous robotic fleet in
a dynamic environment whilst satisfying various constraints.
Other optimization methods [8], such as genetic algorithm,
ant colony algorithm, simulated annealing algorithm have
also been used to solve task allocation problems. Regarding
market-based approaches, a distributed sequential auction
scheme that takes the UAV communication range limitations
into account and a systematic procedure for the auction
process were introduced in [9]. The second subproblem is
path planning. Decades of development has witnessed the
maturity of single agent path planning research. Graph-based
methods, such as the Dijkstra algorithm, the A∗ algorithm,
and the D∗lite algorithm [10], sample-based method like
Rapidly Exploring Random Trees (RRT) [11] and Proba-
bilistic Road Map, mathematics model based methods and
bio-inspired methods have been widely used in various
scenarios. In the recent years, more effort has been put
on multi-agent path finding (MAPF). When the number of
agents is relatively small and the task is to find an optimal,
minimal-cost solution, MAPF can be formalized as a global,
single-agent search problem based on A∗ [12]. Bennewitz
[13] presented a decoupled and prioritized method, thereby
avoiding combinatorially hard planning problems typically
faced by centralized approaches. State-of-art Conflict Based
Search (CBS) algorithm [14] performs a search on a conflict
tree, it can handle hundreds or even thousands of agents to
find an optimal solution of MAPF.

In contrast with decoupled solutions, there are also some
research combining the target assignment and path finding
problem. Ma [15] presented a hierarchical algorithm, which
has outstanding performance in terms of large scale robot
teams. Turpin [16] proposed a concurrent assignment and
trajectory planning strategy, including a centralized solution
that minimize a cost functional based on square of velocity
and a decentralized solution, which allows reassignment and
re-planning. The simulation results demonstrate the central-
ized algorithm that offers globally optimal trajectories, while
the decentralized algorithm yields sub-optimal but safe tra-
jectories. However, the centralized solution is accomplished
under the assumption that the convex hull of initial locations
and goal positions with the Minkovski sum of a ball of a
certain radius is collision-free, which means there are no
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Fig. 1: Block diagram of the assignment-planning-control architecture. The dashed part highlights the contribution in the global planner,
while the overall scheme demonstrates the integration of the global planner with the NMPC control of each aerial platform.

obstacles between start and goal regardless of the assignment,
is unrealistic in the real world.

B. Contribution

In contrast to the previous state of the art, this article
proposes a holistic architecture to solve the multi-robot task
assignment, planning and control for holonomic UAV fleet.
The main contribution is a generally applicable optimal as-
signment method based on the combination of the Hungarian
algorithm and a 3D risk-aware path planner, which constitute
the global planner of the holonomic multiple robots system.

The rest of the article is organized as follows. We be-
gin with the mathematical formulation of the assignment
problem in Section II. Section III introduces the integrated
framework for the task assignment, path planning and nonlin-
ear model predictive control for multi-robot system. Section
IV demonstrates a Gazebo simulation result that proves the
feasibility of proposed scheme. Finally, Section V is the
conclusion and future works.

II. PROBLEM DESCRIPTION

We consider N aerial robots navigating from their ini-
tial positions to N desired goal positions in a known 3-
dimensional environment, indexed by 1, ... ,n.

We define the cost matrix C ∈ RN×N , the element of
which ci,j represents the traversal cost of generated path for
the robot i traveling from its initial position to the goal j.
The assignment matrix φ ∈ RN×N , which assigns robots to
goals:

φi,j =

{
1 if robot i is assigned to goal j
0 otherwise

(1)

Since each goal is required to be assigned to a different robot,
we have

φTφ = IN (2)

Where IN is the N by N identity matrix.
The assignment-planning module seeks to find an optimal

assignment and planning strategy that minimizes the sum

of distance traveled by each individual robot, which is
equivalent to

minimize
φ

n∑
i=1

n∑
j=1

φi,jCi,j

subject to (1), (2)

(3)

To simplify the problem, the following assumptions are
made:

• All robots are homogeneous and with no preference of
goals.

• The initial positions and goal positions do not overlap.
• There is not any external disturbance or actuation error

for the robotic systems.

III. METHODOLOGY

To tackle the problem described in Section II, we propose
an exhaustive autonomy architecture composing of a 3D path
planning, a task assignment and control module, as shown in
Figure 1. First, taking N start positions, N goal positions and
3D occupancy map as input, D∗

+ planner enumerates every
start-goal combination and outputs corresponding path and
traversal cost. By means of mathematical transformations of
the cost matrix, the Hungarian algorithm can assign goals
to each agent with a minimum cost. Finally, NMPC enables
each UAV to follow its predetermined collision free path to
the goal position. The rest of this Section elaborates on each
module of this architecture.

A. 3D Path Planning

In order for the aerial robot to plan a 3D global path
in a known environment, a 3D occupancy map is required
to represent the three-dimensional volumetric space of the
environment. In this work, Octomap [17], an efficient prob-
abilistic 3D grid mapping framework based on octrees is
used, which represents 3D models that include free, occupied
and unknown areas. Each node in an octree that stores the
occupancy probability of a voxel, which can be updated by
the latest sensor measurement. The state (free, occupied and
unknown) of a voxel depends on whether its occupancy prob-
ability exceeds a predetermined threshold. And the children
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of a node can be pruned if all of them have the same state,
resulting in a substantial memory consumption. Octomap is
more powerful in terms of memory usage, future updates
compared to point cloud and fixed grid 3D representation.

As for path planning, there are a plenty of options. A∗

is a best-first search algorithm that aims to find a smallest
cost path based on a heuristic function. D∗lite [10] is an
incremental heuristic search algorithm, which outperforms
A∗ in terms of capability of replanning when traversing
unknown maps. However, D∗lite ignores the physical shape
of robots and considers them as particles, which may lead
to waypoints adjacent to obstacles and potential collisions.
D⋆

+ [18] tackles this problem by assigning different traversal
cost for free, occupied and unknown voxels and adding
a risk layer that increases the traversal cost for voxels in
the proximity of occupied voxels. In this case, the planner
will generate a moderate path with a safety margin next to
obstacles. Thus, we select D∗

+ as our path planner.

B. Hungarian Algorithm

In this article, we focus on the linear balanced assignment
problem, in which the number of agents and tasks are equal.
The naive solution to find the minimal total cost is to
enumerate all possible assignments and calculate the cost
of each one, yet listing n! assignments for n agents and
n tasks is inefficient, with the computational complexity
of O (n!). The Hungarian Algorithm is capable of solving
this problem with the computational complexity O

(
n3

)
[5].

The pseudocodes cost matrix generation and the Hungarian
algorithm are depicted in Algorithm 1 and Algorithm 2.

Some matrix operation functions to be clarified are the

Algorithm 1 Cost Matrix Generation
Input : A : List that stores all initial positions

T : List that store all goal positions
n : Number of the agents

Output : α : Cost matrix
1: Declare α, cost matrix of n by n doubles
2: for all i = 1 to n do
3: for all j = 1 to n do

α(i, j) = D∗
+.ComputeCost(A(i), T (j))

4: end for
5: end for

following ones. The D∗
+.ComputeCost(A(i), T (j)) is a

function of D∗
+ that calculates the minimum traversal cost

from position Ai to position Tj ; the MarkMatrix function
marks as few rows and columns as possible to cover all zeros
in the input matrix and returns two lists rm cm containing
indices of marked rows and marked columns respectively;
the AdjustMatrix function takes current matrix λ and rm,
cm as input, subtracts the lowest unmarked element from
every unmarked elements and adds it to the elements that
are marked twice.

C. Nonlinear Model Predictive Control

By virtue of the 3D path planning and the Hungarian
algorithm, each drone has a predetermined path to reach the

Algorithm 2 The Hungarian Algorithm
Input : α : Cost matrix
Output : λ : Assignment matrix

1: λ = α
2: for all i = 1 to n do

λ(i, :) = λ(i, :)−min(λ(i, :)) {subtract row minima for all
elements in the row}

3: end for
4: for all i = 1 to n do

λ(:, j) = λ(:, j)−min(λ(:, j) {subtract column minima for
all elements in the column}

5: end for
6: Declare a integer σ = 0 that counts the marked zeros
7: Declare a list rm = [ ] that will store the marked rows of λ
8: Declare a list cm = [ ] that will store the marked columns λ
9: while σ < size(λ, 0) do

10: rm, cm = MarkMatrix(λ)
11: σ = len(rm) + len(cm)
12: if σ < size(λ, 0) then
13: λ = AdjustMatrix(λ, rm, cm)
14: end if
15: end while

assigned goal position. In the course of trajectory tracking,
we use a nonlinear model predictive controller, which has
the ability of anticipate future events and take actions ac-
cordingly and has been successfully used for UAV as [19]
and [20].
The nonlinear model [21] of the MAV system is shown as
follows:

ṗ(t) = v(t)

v̇(t) = R(ψ, θ, ϕ)

 0
0
T

 +

 0
0
−g

 −

 Ax 0 0
0 Ay 0
0 0 Az

v(t)

ϕ̇(t) =
1

τϕ
(Kϕϕd(t) − ϕ(t))

θ̇(t) =
1

τθ
(Kθθd(t) − θ(t))

(4)

Where p = [px, py, pz]
⊤ and v = [vx, vy, vz]

⊤ are the
position and velocity of the UAV respectively, R is the
rotation matrix of the body frame B in the fixed inertial
frame W expressed in frame W , T is the thrust produced
by rotors, g is the gravitational acceleration, Ax, Ay , Az
indicate drag coefficients, τϕ,Kϕ and τθ,Kθ are the time
constant and gain of inner-loop behavior for roll angle ϕ
and pitch angle θ respectively. The state of the model is
x = [p, v, ϕ, θ]

⊤ and the system input is u = [T, ϕd, θd]
⊤.

By discretization of (4) with the sampling time Ts it gives
the prediction form (5):

xk+1 = f(xk, uk) (5)

In the NMPC approach, an optimal control problems is
solved iteratively on a finite prediction horizon N . The states
and control inputs j steps ahead of the current time step
k are denoted as xk+j|k and uk+j|k. At each time step,
NMPC calculates an optimal sequence of control actions[
uk|k, ..., uk+N−1|k

]
that minimize the predetermined cost

function and applies the first control action to the controller.
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In the sequel we introduce a cost function J , that penalizes
the deviation of predicted position from reference position,
the deviation of input from reference hovering input, the
successive changes in control action.

J =

N−1∑
j=0

(
∥∥xref − xk+j|k

∥∥Qx
2︸ ︷︷ ︸

position error

+
∥∥uref − uk+j|k

∥∥Qu
2︸ ︷︷ ︸

Input penalty

+
∥∥uk+j|k − uk+j−1|k

∥∥Q∆u
2︸ ︷︷ ︸

Input change penalty

)

(6)

where Qx ∈ R8×8, Qu, Q∆u ∈ R3×3 are positive definite
weight matrices that reflect relative importance of each term
in cost function.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed scheme,
we generated a custom world in the Gazebo simulation
framework, where several obstacles in the shape of cylinders
and cubes are enclosed by a square wall structure with a
length and width of 18 meters and a height of 3.5 meters.
Initially, the pipeline requires the known 3D occupancy map
of the environment, which without loss of generality has been
generated by the collected onboard sensor data from previous
simulation runs. The resolution of the Octomap is set to
0.4, to facilitate computation of building search graph in D∗

+

planner. The Gazebo world and the resulting 3D occupancy
map are shown in Figure 2 and Figure 3 respectively.

Fig. 2: Virtual world with obstacles in Gazebo simulation environ-
ment.

Fig. 3: Generated Octomap of the virtual world.

Lets consider a scenario where four tasks are assigned to
four agents. The start positions of four agents are A1 =
[0.0, 3.5, 0.0], A2 = [1.0, 3.5, 0.0], A3 = [2.0, 3.5, 0.0],
A4 = [3.0, 3.5, 0.0], and four goal positions are chosen
randomly as long as they are neither outside the map nor
occupied: T1 = [−4.5,−7.0,−1.5], T2 = [−7.5, 3.5, 2.3],
T3 = [6.5,−5.0, 1.0], T4 = [8.0, 8.0, 0.8].
D∗

+ planner takes the generated Octomap as a map input
and the safety distance is set to r = 2 voxels. Then, we
enumerate combinations of start position of agents and goal
positions and publish them to the D∗

+ planner and the paths
and traversal costs are obtained. As shown in Table I, a cost
matrix is built for this assignment. The assignment result is

TABLE I: Cost matrix of UAVs approaching tasks

Agent

Cost Target
T1 T2 T3 T4

A1 66.0915 46.5344 56.5262 50.3840
A2 67.7483 50.5344 54.8693 50.3840
A3 70.2337 56.5344 51.1127 42.7272
A4 71.8905 60.5344 49.4558 41.0703

depicted in Table II that displays the minimum total cost of
UAVs way to assign the goals: the first goal T1 is assigned to
agent 2 A2, T2 is allocated to A1, and T3 T4 are allocated to
A3 A4 respectively. With the stored paths from four starting
positions to corresponding goal positions, we set out to tune
the NMPC parameters for the follow-up UAV control.

For the NMPC parameter tuning, Qx = diag(6, 6, 40, 2,
2, 3, 8, 8), Qu = diag(3, 10, 10), Qδu = diag(3, 15, 15).
The NMPC prediction horizon is N = 20 with a sampling
time of 50ms, indicating NMPC predicts states of the UAV
within one second. The NMPC scheme is implemented in
Optimization Engine (OpEn), an open-source code genera-
tion software for embedded nonlinear optimization, which is
fully ROS-integrated [22].
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TABLE II: Assignment result of the Hungarian Algorithm

Agent

Cost Target
T1 T2 T3 T4

A1 0 46.5344 0 0
A2 67.7483 0 0 0
A3 0 0 51.1127 0
A4 0 0 0 41.0703

The trajectories of the four agents are shown in Figure 4,
where the black dots indicate the initial positions of the four
UAVs and the four red stars denote the four goal positions.
Clearly all four agents are able to reach in the vicinity
of assigned goal positions. Furthermore, we can observe
that some UAVs do not reach the desired 3D coordinates
precisely. This is acceptable since the goal point is regarded
as reached if it is approached within 0.4m from the target
waypoint.

Fig. 4: Followed paths from the four agents during the first
simulation. The highlighted stars denote the goal positions.

Figure 5 depicts the second simulation with different initial
positions and different goal positions. Notably, agent A1 is
the closest agent to the goal T2 in Euclidean distance (shown
as grey dot line), while the Hungarian algorithm assigned
goal T2 to A2 considering the minimum overall traversal
cost.

V. CONCLUSIONS AND FUTURE WORK

In this article, we proposed a novel and complete as-
signment, planning and control architecture for multiple-
goal-multiple-UAVs system, which integrates D∗

+ algorithm,
the Hungarian algorithm and the nonlinear model predictive
controller for 3D path planning, task assignment and control
respectively. The architecture was applied to a team of
four UAVs in a known environment with four random goal
positions. The Gazebo simulation result demonstrated that it
is possible to find a one goal to one UAV assignment that

Fig. 5: Followed paths from the four agents during the second
simulation. The highlighted stars denote the goal positions.

minimize the total traversal cost and four agents successfully
follow the collision free path to reach the goal positions. As
a clear direction for future work we are consider to apply
this framework to multi-robot inspection and objects pick-
up relocation using multiple agents.

Future work concerns extending the assignment problem
to the case where the number of agents and the number of
tasks are different. It will also be interesting to think over
the assignment problem for heterogeneous robots.
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