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A B S T R A C T

This article establishes the novel D∗
+, a risk-aware and platform-agnostic heterogeneous global path planner

for robotic navigation in complex environments. The proposed planner addresses a fundamental bottleneck of
occupancy-based path planners related to their dependency on accurate and dense maps. More specifically,
their performance is highly affected by poorly reconstructed or sparse areas (e.g. holes in the walls or ceilings)
leading to faulty generated paths outside the physical boundaries of the 3-dimensional space. As it will be
presented, D∗

+ addresses this challenge with three novel contributions, integrated into one solution, namely:
(a) the proximity risk, (b) the modeling of the unknown space, and (c) the map updates. By adding a risk layer
to spaces that are closer to the occupied ones, some holes are filled, and thus the problematic short-cutting
through them to the final goal is prevented. The novel established D∗

+ also provides safety marginals to the
walls and other obstacles, a property that results in paths that do not cut the corners that could potentially
disrupt the platform operation. D∗

+ has also the capability to model the unknown space as risk-free areas that
should keep the paths inside, e.g in a tunnel environment, and thus heavily reducing the risk of larger shortcuts
through openings in the walls. D∗

+ is also introducing a dynamic map handling capability that continuously
updates with the latest information acquired during the map building process, allowing the planner to use
constant map growth and resolve cases of planning over outdated sparser map reconstructions. The proposed
path planner is also capable to plan 2D and 3D paths by only changing the input map to a 2D or 3D map and it
is independent of the dynamics of the robotic platform. The efficiency of the proposed scheme is experimentally
evaluated in multiple real-life experiments where D∗

+ is producing successfully proper planned paths, either in
2D in the use case of the Boston dynamics Spot robot or 3D paths in the case of an unmanned areal vehicle
in varying and challenging scenarios.
1. Introduction

Robots are becoming more and more common for a large variety of
tasks in real-life challenging environments, including but not limited
to search and rescue (Agha et al., 2021; Hayat, Yanmaz, Bettstetter, &
Brown, 2020; Mishra, Garg, Narang, & Mishra, 2020; San Juan, Santos,
& Andújar, 2018; Schedl, Kurmi, & Bimber, 2021), inspection (Zhang,
Zhang, & Low, 2021), and delivery (She & Ouyang, 2021). In general,
robotic competitions and similar events like the recent DARPA’s Sub-
Terranean Challenge (DARPA, 2020) have increased the popularity of
robotic platforms, their interaction, and their collaborative operation.
With the utilization of multiple robotic platforms, large areas can be
covered collaboratively, or multiple tasks can be executed simultane-
ously with increased performance. However, with the increased number
of robots, the complexity increases as well, while the overall usability
reduces for every robot, a reality that is caused by the utilization of
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unique robot-specific software and corresponding settings. One way to
simplify the challenge of operating multiple robots is to unify parts of
the software independently of the type of platform. Path planning is
such an area where a platform-agnostic algorithm could be beneficial
and thus in this article we propose a novel D∗

+ platform-agnostic global
path planner and experimentally evaluate it with the Boston Dynamics
(BD) Spot quadruped robot and a quadrotor.

Some path-planning algorithms base their operation on the utiliza-
tion of environmental characteristics to generate paths in the oper-
ational environment. As an example, one can mention the COMPRA
framework (Lindqvist, Kanellakis, Mansouri, akbar Agha-mohammadi
& Nikolakopoulos, 2021) where the narrow nature of tunnels is utilized
to fly towards the deepest point of the tunnel and thus explore it in an
efficient way. However, this method works well in tunnels and similar
environments, but it is not able to handle junctions and open spaces in
vailable online 6 December 2022
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a good way. For similar reasons, using a heterogeneous path planner,
like the herein novel proposed D∗

+ that is able to work efficiently in
many environments, is a most desired need.

Many path planners utilize an occupancy map (Hornung, Wurm,
Bennewitz, Stachniss, & Burgard, 2013; Wang et al., 2021; Xiong, Gao,
Wang, Li, & Lin, 2021; Zhang et al., 2021) to plan upon, as for example,
RRT∗, A∗, theta∗, D∗, and the jump point search (Wu, Xu, Zhen, &
Wu, 2019; Zammit & Kampen). However, these planners do rely on
a dense occupancy map in order to avoid the problematic situations
of generating invalid paths or shortcuts that are planned through
obstacles and wall openings. Multiple ways of plugging such holes
have been suggested, like filtering (Atapour-Abarghouei & Breckon,
2018) or inflation (Li, Zlatanova, Koopman, Bai, & Diakité, 2018) for
example. Filtering can solve many imperfections of a map, however, it
can also filter out smaller features, such as small actual openings in the
operational environment. Furthermore, inflation of the occupied spaces
is a simple solution that creates a safety marginal that forces the path to
be planned inside the safe region and thus has some marginal for errors.
However, inflation is a hard artificially created boundary that can block
a path, where a robot would have been able to go, even though it would
be a higher risk passage. Alike these two approaches, risk-aware-based
path planners can accept some risks to reach the goal without taking
unnecessary risks (Laconte et al., 2021).

Utilizing a risk assessment to plan for a better path is something that
has been addressed previously in the scientific literature as in Cuevas,
Ramirez, Shames, and Manzic (2021), Huang et al. (2020). However,
one of the biggest challenges, when working with risk maps, is how
to generate the risk and what to consider as a risk. In many realistic
application scenarios, a type of risk that can be considered is the
consequences if a crash or failure occurs (Hu, Pang, Dai, & Low, 2020;
Primatesta et al., 2017), and then minimizing the consequences of a
crash. An alternative method is to utilize offline and online risk maps
to plan crash-safe paths as in da Silva Arantes, Toledo, Williams, and
Ono (2019) and Primatesta, Guglieri, and Rizzo (2019), while this
approach is considering a 2D risk map in open areas to plan their
paths. Considering the consequences of a crash is a very good approach
to enable good paths, however, it does not aid in actually avoiding
a true collision, while for the case of path planning for Unmanned
Aerial Vehicles (UAVs) that can move in 3D, the risk assessment and
path planning algorithms should utilize all three dimensions when
planning a path (Hakobyan, Kim, & Yang, 2019). Risk considerations
for safe path planning in a confined environment and by using 3D
maneuvering is barely done in the literature. Thus, one of the few works
as in Zhou, Pan, Gao, and Shen (2021) utilizes a prediction risk of
unknown areas and controls the yaw angle to identify and calculate
potential dangers as early as possible. For the case of ground robots,
rough and uneven surfaces can be considered as a realistic risk (Ono,
Fuchs, Steffy, Maimone, & Yen, 2015; Puck et al., 2020), however,
sharp rocks and loose sand that are true risks for ground robots do not
constitute real relevant risks for UAVs unless it is so loose that the UAV
creates dust out of it. As such, depending on the environment and the
utilized robotic platform, different things can be identified as a risk and
with a different estimation of their severity impact, while one of the
few things that are always dangerous for the robotic operation is the
existence of obstacles and the corresponding proximity to the obstacles.

Many path planners try to plan the shortest possible path, either by
ensuring that it as a grid search method like the D∗ style planners or
as sample-based planners, like the RRT∗ that performs pseudo-random
guessing of a path and settles for one that is good enough. In this
approach, the shortest path around a corner is tangent to the inside
corner, but although this is a free space, it is not necessarily safe for
a robot to be that close to an obstacle, mainly due to inaccuracies
in mapping, state estimation, and path tracking. Thus, one option to
generate safe paths is to use model constraints, such in the methods
in Tordesillas and How (2021), Tordesillas, Lopez, and How (2019) and
2

Yan F. (2013) when planning. These path planners are able to generate
paths with the knowledge of robot kinematics and ensure that the path
is possible to traverse. One of the main disadvantages is the complexity
of these planners is the need to know the kinematic model of the robot,
which makes it hard to allow for a generalized application of these
algorithms between different robots.

Among the platform agnostic planners, one can highlight the Graph-
based Exploration Planner 2.0 (Gbplanner) Dang, Tranzatto, Khat-
tak, Mascarich, Alexis, and Hutter (2020), Kulkarni, Dharmadhikari,
Tranzatto, Zimmermann, Reijgwart, De Petris, Nguyen, Khedekar, Pa-
pachristos, Ott, Siegwart, Hutter, and Alexis (2022), which was devel-
oped and utilized by team CERBERUS who won the DARPA subter-
ranean challenge (DARPA, 2020). Gbplanner is a combined exploration
and path planning solution that builds a graph through a RRT local
planning step. After the graph is built, Dijkstra’s algorithm is used
to rapidly plan global paths on it. In our work, we will evaluate our
planner against Gbplanner, which is a state-of-the-art path planning
solution.

Thus, the main contribution of this article is the establishment
of the novel D∗

+ occupancy-based risk-aware, platform-agnostic, het-
erogeneous global path planner. The novelty of D∗

+ stems from the
evolution of D∗-lite by (1) treating proximity to occupied spaces as
risky areas, (2) modeling explicitly unknown areas as a risk, and (3)
allowing dynamic 3D map updates for planning. Moreover, D∗

+ is a
ield-hardened global planner that has been extensively tested and
valuated on a quadruped Spot robot and an UAV. D∗

+ stands, to the
est of the author’s knowledge, one of the few global path planners that
re able to avoid obstacles by maneuvering in full 3D and considering
isks while doing so. At the same time, D∗

+ is the first algorithm where
these types of risks and path planning methods are used in combination.
Finally, the code has also been made open source for the robotics
community and is available on GitHub.1

1.1. Outline

The rest of the article is structured as follows. In Section 2 a
complete presentation of the architecture and core components of D∗

+
s provided, while in Section 3 the experimental setups for the algorith-
ic evaluation are explained. In Section 4 the extended experimental

valuation of the suggested scheme is presented, while future work and
onclusions are drawn in Section 5.

. D∗
+

The D∗-lite (Koenig & Likhachev, 2002) algorithm is able to plan a
ath on a grid (G) where it finds the shortest path 𝑃𝐀→𝐁 from the point

𝐀 to the point 𝐁, based on the traversal cost (𝐶) of the voxels (𝑣) in
G so that the ∑

∀𝐶 ∈ 𝑃𝐀→𝐁 is the smallest possible cost, while another
benefit of D∗-lite is the way it saves previous path calculations to speed
up the re-planning of 𝑃 .

The main difference between D∗-lite and D∗
+ is how G is constructed

from an input map M. In the proposed scheme, D∗
+ is creating G with

the consideration of free, occupied and unknown voxels (𝑣𝑓 , 𝑣𝑜, 𝑣𝑢) and
a risk layer. Since the dimensions of G are changeable, the D∗

+ is also
able to plan paths in both 2D and 3D. Thus, by creating G with only
one layer in the 𝑧-axis it will enable D∗

+ to plan a 2D path, while if G is
reated with multiple layers in the 𝑧-axis it will enable for a 3D path.
ecause D∗

+ is planning 𝑃 within G, any path in Fig. 1(a) will be a 2D
ath and any path in Fig. 1(b) will be a 3D path. Thus, is it possible
o use the same algorithm to plan both 2D and 3D paths, where the
ifference is the map M from which G is created.

The proposed D∗
+ path planer utilizes three main differences from

∗-lite (as presented in Koenig & Likhachev, 2002) namely: (1) the

1 Link to the code on GitHub: https://github.com/LTU-RAI/Dsp.

https://github.com/LTU-RAI/Dsp
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Fig. 1. G with one 𝑧-layer from a M2 and G with multiple 𝑧-layers from a M3. Both M2 and M3 are created from the same environment.
Fig. 2. A block diagram illustrating how the algorithmic blocks in D∗
+ are connected. Algorithm 1 receives updated M and decides if G should be created from a scratch (Algorithm

2) or updated (Algorithm 3). Algorithms 4–5 are used as help functions for Algorithms 2–3 to generate risk for G.
treatment of unknown voxels, (2) proximity risk and (3) map up-
dates. The rest of this Section describes the proposed algorithm in
detail, which can be also summarized in Algorithms 1–5. In Fig. 2
a block diagram illustrating how the algorithms in D∗

+ are connected
with each other is presented, while it should be mentioned that all
the implementations are made in C++ within the Robotic Operating
System Stanford Artificial Intelligence Laboratory et al. and are open
sourced as indicated before.

2.1. Modeling of unknown space

Imperfections in M will lead to imperfections in G that may lead
to path short-cutting through walls like the blue path in Fig. 3. In D∗

+
this problem is solved by having 𝑣𝑢 represented in G, as well as 𝑣𝑓
and 𝑣𝑜. Let 𝐶𝑓 , 𝐶𝑢, 𝐶𝑜 costs assigned to 𝑣𝑓 , 𝑣𝑢, 𝑣𝑜 respectively so that
𝐶𝑓 < 𝐶𝑢 < 𝐶𝑜, where in such case 𝑃 will be planned through 𝑣𝑓 instead
of 𝑣𝑢 even though the resulting 𝑃 length is longer. This results from
the core of D∗

+ that plans the path where ∑

∀𝐶 ∈ 𝑃𝐀→𝐁 is the smallest
possible. With a higher 𝐶𝑢 value the D∗

+ will plan the 𝑃 in 𝑣𝑓 at a cost
of longer 𝑃 ’s than it would make with a smaller 𝐶𝑢.

2.2. Path planning with a proximity risk

D∗ style path planners are created to plan the shortest path from
point 𝐀 to 𝐁, and the shortest path around a bend, or corner is to
hug, meaning traverse as close as possible inside of the corner of
interest. As such, the utilization of such planners introduces the issue
that the planned path leaves no room for errors in path following and
is even setting limitations to the robot’s physical size. To deal with this
problematic situation, in D∗

+ a risk layer is introduced, where 𝑣’s in the
proximity of a 𝑣𝑜 are given an extra traversal cost 𝐶𝑟 and as such the
traversal cost of a 𝑣 in the proximity of a 𝑣𝑜 can be defined as:

𝐶𝑟 =

{ 𝐶𝑢
𝑑+1 if 𝑑 < 𝑟

(1)
3

0 else
Fig. 3. A comparison of path planning with (red line) and without (blue line)
consideration of 𝑣𝑢 under the same input M, starting and endpoint. This comparison
does also show the difference between D∗

+ and D∗-lite (adjusted for online usage
with an octomap). With the utilization of 𝑣𝑢 the planned path remains in the caving
environment, while without the path it becomes invalid while passing through the solid
rock wall.

𝐶 =

{

𝐶𝑓 + 𝐶𝑟 if 𝑣 is 𝑣𝑓
𝐶𝑢 + 𝐶𝑟 if 𝑣 is 𝑣𝑢

(2)

where 𝑑 is the distance in voxels to the closest 𝑣𝑜 and 𝑟 is the range
that is considered as the proximity to a 𝑣𝑜. This novel approach creates
a gradient risk that has the highest value next to 𝑣𝑜 and decreases with
distance as depicted in Fig. 4 where the 𝑣 with a 𝐶𝑟 is depicted.

A direct effect of the proposed D∗
+ approach is that in places with

sufficient space, this risk layer will enable the planning of a path that
is outside of the risk area. However, in the cases where a passage is
narrow, the gradient of the risk will cause the path to be planned in
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Fig. 4. A visualization of 𝐶𝑟, where red is a high risk and green is a low risk. It should
be noted that 𝑉𝑓 and 𝑣 with 𝐶 ≥ 𝐶𝑢 are not visualized.

the center of the passage, as illustrated in Fig. 5. As such, this novel
addition allows D∗

+ to plan paths in narrow passages and have a larger
safety margin in more open areas, especially when compared with
similar path planners.

2.3. Continuous map updates and expansions during mission

While the robotic platform is traversing, the mapping software is
continuously updating the known map or M, while at the same time it
is expanding it to include the newly discovered areas and adding the
previously unknown sections, while adjusting the incorrectly registered
voxels as indicated in Figs. 6(a) and 6(b).

To accommodate for these changes in M, the G is created dynam-
ically so that it is capable of expanding and adjusting according to
M. In case D∗

+ is deployed in an area where dynamic obstacles exist,
the M and subsequently the G will be updated and as such, 𝑃 will
be updated accordingly, thus attempting to keep it safe and collision-
free. The dynamic expansion of G in D∗

+ is to guarantee that 𝑃 will
be updated in time to avoid a collision if obstacles are moving or the
environment changes. Nevertheless, D∗

+ cannot replace a low-level local
reactive obstacle avoidance module, in situations where the expansion
time is longer. Even if it would be fast enough is it still recommended
to have a reactive safety component in the autonomy stack to ensure
safety in the overall robotic mission.

Algorithm 1: Decide if G will be updated or recreated
1 Input: New map 𝑛𝑀
2 Old map 𝑙𝑀
3 Output: grid G
4 if size of 𝑛𝑀 == size of 𝑙𝑀 then
5 Algorithm 3 (𝑛𝑀) ⊳ If the same size update existing G
6 else
7 Algorithm 2 (𝑛𝑀) ⊳ Else create a new G
8 end

3. Experiments

Three sets of experiments were executed: (a) with the Boston Dy-
namics Spot robot, used for 2D path planning, (b) with a UAV for
3D path planning (c) comparison of 3D planning using the UAV. The
duration of the experiments was varying among the performed exper-
iments between approximately 45s and 680s, where the robots had
an average moving velocity of approximately 0.7m/s. To execute the
experiments that evaluated the D∗ ’s capability to plan for a safe path
4

+ e
Algorithm 2: Create grid G

1 Input: Map 𝑀
2 Output: Grid G
3 𝑔 ← new array[size of 𝑀 : 𝐶𝑢]
4 for each 𝑣 in 𝑀 do
5 if 𝑣 == 𝑣𝑜 then
6 ⊳ If occupied set occupied and add traversal cost to 𝑣 in

the proximity
7 𝑔[𝑣] ← 𝐶𝑜
8 Algorithm 4(𝑣)
9 else
10 𝑔[𝑣] ← 𝑔[𝑣] − 𝐶𝑢
11 ⊳ If free remove cost for 𝐶𝑢 but keep any 𝐶𝑟

12 OctoGrid ← from 𝑔
13 ⊳ Connect and search the OctoGrid
14 G ← from OctoGrid

Algorithm 3: Update occupancy grid G

1 Input: New map 𝑛𝑀
2 Old map 𝑙𝑀
3 Output: Updated occupancy grid G
4 for each 𝑛𝑣 in 𝑛𝑀 do
5 if 𝐶𝑛𝑣 == 𝐶𝑜 and 𝐶𝑙𝑣 ≠ 𝐶𝑜 then
6 G[𝑛𝑣] ← 𝐶𝑛𝑣
7 Algorithm 4 (𝑛𝑣)
8 ⊳ Set proximity cost for surrounding voxels
9 else if 𝐶𝑛𝑣 == 𝐶𝑓 and 𝐶𝑙𝑣 ≥ 𝐶𝑢 then
10 if 𝐶𝑙𝑣 == 𝐶𝑜 then
11 G[𝑛𝑣] ← 𝐶𝑓
12 Algorithm 5 (𝑛𝑣) ⊳ Adding 𝐶𝑟 if needed
13 else
14 G[𝑛𝑣] ← 𝐶𝑙𝑣 − 𝐶𝑢
15 ⊳ Removing 𝐶𝑢 without changing 𝐶𝑟

lgorithm 4: Calculate 𝐶𝑟 for voxels within 𝑟 from 𝑣𝑜
1 Input: 𝑣
2 Output: Updates in G
3 for each 𝑖 in [−𝑟, 𝑟] do
4 for each 𝑗 in [−𝑟, 𝑟] do
5 for each 𝑘 in [−𝑟, 𝑟] do
6 𝑣𝑟 ← G[𝑣𝑥 + 𝑖, 𝑣𝑦 + 𝑗, 𝑣𝑧 + 𝑘]
7 𝐶𝑟 ← 𝐶𝑢∕(𝑖2 + 𝑗2 + 𝑘2 + 1)
8 if 𝐶𝑣𝑟 == 𝐶𝑜 and 𝐶𝑟 > 𝐶𝑣 then
9 G[𝑣] ← 𝐶𝑟
10 else if 𝐶𝑣𝑟 == 𝐶𝑜 and 𝐶𝑣 ≥ 𝐶𝑢 and 𝐶𝑟 + 𝐶𝑢 > 𝐶𝑣

then
11 G[𝑣] ← 𝐶𝑟 + 𝐶𝑢

hat a robot can traverse, multiple additional components are needed

or enabling an overall autonomous robotic mission that indirectly

ffects the overall performance mission. As such, in the rest of this

ection, we will provide a comprehensive overview of the robotic

onfigurations and the software components that were involved in the

xperimental evaluations.
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Fig. 5. An illustration of how D∗
+ plans a path from the blue ball to the red ball with regards to the risk layer, red voxels are higher risk, green voxels are lower risk, and black

voxels are occupied.
Fig. 6. D∗
+ outcome in planning a path from 𝐀 to 𝐁 in a partially known area where the unknown part is denoted as blue striped. As the robot traverse in the initially planned

path, the robot discovers and register more known area and as such the overall path to be executed is online updated.
Fig. 7. Software architecture on Spot.
3.1. 2D path planning: The Boston dynamics spot use case

In this work, the 2D path planning capabilities of D∗
+ are tested

with the BD Spot robot (see Fig. 8), which is equipped with a 3D
lidar, an Inertial Measurement Unit (IMU), and an onboard computer.
The software architecture used is depicted in Fig. 7. In this software
configuration, the Google Cartographer (Hess, Kohler, Rapp, & Andor,
2016) was utilized is a Simultaneous Localisation and Mapping (SLAM)
algorithm being able to create a 2D grid map M2 and the corresponding
state estimation information. The information from the state estimation
uses the current position of the robot, as the starting position 𝐀 that
together with M , and the goal position 𝐁 are used by D∗ to plan a
5

2 +
path 𝑃 . Moreover, a position controller takes 𝑃 and gives corresponding

velocity commands to Spot’s built-in low-level motion controller that

makes Spot move. In the experiments with Spot, a prebuild 2 of the

area was provided and thus allowing for a longer, than the sensor range,

𝑃 to be planned from the beginning of the mission.

A more complete and exhaustive presentation of utilized Spot’s au-

tonomous capability is presented in Koval, Karlsson, and Nikolakopou-

los (2022) (see Fig. 8).
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Fig. 8. Spot equipped with the attached sensors for the autonomy navigation and computational power. In this view perspective, the Vectornav IMU is placed under the Velodyne
lidar and is not visible in the Figure.
Fig. 9. The UAV used for the 3D path planning experiments.
Fig. 10. Software architecture on the UAV.
3.2. 3D path planning: the UAV use case

For the 3D path planning experiments, a custom-built UAV was used
as depicted in Fig. 9. In this case, the D∗

+ architecture operates in the
3-dimensional space and requires as input the current position 𝐀, a goal
6

position 𝐁 and an occupancy map M3, while it provides the path 𝑃𝐀→𝐁
as an output. The autonomous navigation of the robot is based on the
path generated from D∗

+, which essentially coordinates the motion of
the robot, while other modules, such as the state estimation, and a
Non-Linear Model Predictive Controller (NMPC) (Lindqvist, Mansouri,
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Fig. 11. Sequential 𝐁 were set in a large subterranean tunnel. Spot navigates to each 𝐁 and traverses about 335m in total. In this experiment, where the map is known a priori,
D∗
+ shows an increased capability to plan longer paths and excellent replanning capabilities. In this case, 𝐁3 was set before Spot reached 𝐁2, thus forcing a replanning. When 𝐁3

was reached where a new point 𝐁4 was set at approximately the same point as 𝐁2.

Fig. 12. Spot navigates along the planned path shown in green, and the traversed path shown in red.
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Fig. 13. As Spot traverse the D∗
+ planned path from the blue dot to the red dot, more information on the surrounding environment is provided. Thus the planner updates the

current M causing D∗
+ to reactively re-plan and adjust the overall path.
Algorithm 5: Calculate 𝐶𝑟 when a 𝑣 is discovered to be free

1 Input: 𝑣
2 Output: Updates in G
3 𝐶𝑟 ← 0
4 for each 𝑖 in [−𝑟, 𝑟] do
5 for each 𝑗 in [−𝑟, 𝑟] do
6 for each 𝑘 in [−𝑟, 𝑟] do
7 𝑣𝑟 ← G[𝑣𝑥 + 𝑖, 𝑣𝑦 + 𝑗, 𝑣𝑧 + 𝑘]
8 if 𝐶𝑣𝑟 == 𝐶𝑜 then
9 𝐶 ← 𝑐𝑢∕(𝑖2 + 𝑗2 + 𝑘2 + 1)
10 if 𝐶 > 𝐶𝑟 then
11 𝐶𝑟 ← 𝐶

12 G[𝑣] ← 𝐶𝑟

Fig. 14. On the left path planned until the edge of the known map and on the right
new path planned towards the goal after a map expansion of the same area. In both
cases, the path is denoted by the solid green line.

Haluška & Nikolakopoulos, 2021) that uses an artificial potential field
algorithm (Lindqvist, Kanellakis et al., 2021) to reactively avoid ob-
stacles, are part of the overall mission execution. The UAV’s primary
sensor in the autonomy stack is a Velodyne Puck Lite lidar, which is
used alongside an IMU to provide state estimation information on the
current position 𝐀. In this work, the 𝐀 is calculated based on LIO-
SAM (Shan et al., 2020), while the 3D occupancy map M3 is generated
based on the Octomap (Hornung et al., 2013) framework.

In these experiments, the artificial potential fields are only used
as an extra safety layer to avoid collisions when flying close to ob-
stacles (e.g. less than 50 cm relative distance to an obstacle), where
the designed behavior is to prioritize the influence of the potential
8

fields to directly affect the movement since the path, in that case, is
considered to be unsafe. Furthermore, the software architecture for the
UAV is visualized in Fig. 10. In all the 3D tests, no information was
given a-priori, meaning that the UAV explored  during the mission,
thus utilizing both related map updates and expansions. During the
experiments, the waypoints were manually set as the mission was
evolving and the desired waypoints were reached, while after some
time a waypoint was commanded to set a return to the starting location.

3.3. Graph-based Exploration Planner 2.0

The Graph-based Exploration Planner 2.0 was selected to do a com-
parison with the proposed method because of its proven capabilities
in the DARPA subterranean challenge and the possibility to run it in a
waypoint navigation mode, which is similar to how the D∗

+ is used. In
general, there are considerable differences between Gbplanner and D∗

+,
which may bias the evaluation results, depending on the experimental
setup. In order to achieve a representative comparison in Gbplanner,
the collision model was adjusted to match the UAV size.

4. Experimental results

4.1. 2D path planning

Among the platforms that were used in our experiments, Spot
robot has a significantly longer battery life than the UAV and can
explore larger subterranean areas. Thus, in this article, the Spot robot
was used to evaluate the D∗

+ 2D performance. This allowed us to
evaluate path planning in larger maps and over longer distances in
comparison with the UAV. Worth noting that the computational load
for 2D path planning was significantly lower than for 3D. In this case,
the experiments with Spot showed that D∗

+ is able to plan long paths
that were approximately 80m at a time and without collisions. One
such experiment, where a multiple waypoint mission was executed,
is presented in Fig. 11, where a total of 7 waypoints, were reached
progressively. in this case, Spot was capable of navigating to each of
the waypoints without collisions.

Another experiment was focusing on the use case where Spot had
to traverse approximately 80m in a more narrow tunnel. Fig. 12 shows
how Spot can follow the path planned by D∗

+ as it has suitable distances
to both walls.

When M updates it will generate new conditions for D∗
+ to plan

paths, therefore D∗
+ will constantly perform an update of the path to

keep it safe. In Fig. 13 it is presented an example of how the path may
be re-planed as new information about the environment is acquired.

As such, the starting path is planned initially inside a wall but as it is
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Fig. 15. Snapshots from three of experiments executed with the UAV.

Fig. 16. D∗
+ plans a path around a bend while keeping a suitable distance to the inside wall.

Fig. 17. D∗
+ path planning with a low blockage so that the UAV needs to fly higher to keep a suitable safety marginal to the blockage.
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Fig. 18. D∗
+ is capable of planning a path from beyond the line of sight to the end of the green line while having the desired safety margin throughout the whole path.
Fig. 19. D∗
+ is tasked to plan a path from the red dot to the end of the green line. The resulting path keeps proper safety margins that are relative to the pillar so that the UAV

can traverse it safely.
discovered in the corresponding map updates, the path is interfering
with a wall and thus reactively D∗

+ performs a re-planning of the path
to stay away from it and in a safe operation.

Another merit of the proposed D∗
+ is the sequential map and graph

update capability, which allows planning or re-plan paths towards B
once the robot discovers more parts of the area that navigates along.
Fig. 14 depicts the map expansion capability with Spot traversing in
the tunnel, wherein the first case the path is planned until the edge of
the known map and then a new path is planned in the expanded map
of the same area to reach another goal during the mission.

4.2. 3D path planning

D∗
+ 3D planning capabilities were also tested in three experiments

in a cave tunnel where it was challenged to plan 𝑃 along (a) a low
blockage as depicted in Fig. 15(a), (b) a tall obstacle to the side making
a narrow passage as in Fig. 15(b), and (c) around a pillar as depicted
in Fig. 15(c).

In the tunnel corner experiment, the D∗
+ planned 𝑃 to follow the

bend with a suitable safe marginal to the walls. As shown in Fig. 16 D∗
10

+

is planning a safe path following the tunnel where only the center point
of voxels is selected as waypoints in the path, resulting in a zig-zag
path.

D∗
+ was also challenged with a low-height obstacle that could poten-

tially risk a collision with the UAV’s landing gear if it keeps its current
altitude. In this case, 𝑃 is planned with an altitude change in order to
keep the path safe, as depicted in Fig. 17.

At this point, it should be also mentioned that when D∗
+ is tasked

to plan a path to a point beyond the line of sight, the algorithm is still
capable of providing a path that is inherently safe and short as possible.
This performance is depicted in Fig. 18 whereas it is shown, the free
space gap between the obstacle to the left and the right wall, was very
narrow for the UAV to pass through them, and thus a higher path has
been selected.

In the last experimental test, the D∗
+ is tasked to plan a path from

one side of a pillar to the other and then back again. This experiment
shows that D∗

+ takes the shortest path outside the risky area from the
pillar, as also depicted in Fig. 19.

During the experiment, with an obstacle at the side of the tunnel,
D∗ planned 𝑃 that was in the center of the opening as shown in Fig. 20.
+
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Fig. 20. A UAV avoids colliding with an obstacle on the side by planning 𝑃 (the green line) in the center of the opening.
Fig. 21. An instance from the autonomous mission and corresponding path planning when the UAV took a too-tight turn around an obstacle and caused the artificial potential
field to avoid a collision. The green line is 𝑃 and the red bars are the path followed by the UAV.
Fig. 22. Differences in planned paths between D∗
+ and Gbplanner are visible when both planners plan in the same area under the same conditions.
When passing the obstacle, the remaining planned path converges again

to the center of the opening, while keeping a safe distance to all sides.
11
During all the experimental trials with the UAV, there have been
only four times that the potential fields have been triggered to avoid a
collision, while two of them were barely noticeable, only just clipping
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Fig. 23. The memory consumption of D∗
+ and Gbplanner in the comparison experiment. The shaded areas mark the time when D∗

+ performed expansion of G.
Fig. 24. The CPU load comparison of D∗
+ and Gbplanner in the comparison experiment. The shaded areas mark the time when D∗

+ performed expansion of G.
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corner of the protected area, while it should be noted that: (a) the
afety would have been guaranteed even without the potential fields,
b) one triggering was because 𝐁 were set to close to a wall, and (c)
he fourth time was during the return on the side obstacle, where 𝑃
ere planned tightly around that. In the final case, the path following
ad a slightly too long look ahead distance, thus causing it to shortcut
he corner in a more intense approach, as it can be seen in Fig. 21.
he latest was a dangerous passage close to the obstacle but it was not
ue to a fault in the D∗

+ planner, rather than a weakness in the path
ollowing the autonomy stack. In this case, the easiest solution would
ave been to increase 𝑟 so 𝑃 are planned with the proper safe margins
or these types of corner-cutting as well.
12

a

.3. Comparison with Graph-based Exploration Planner 2.0

The experiments used for path planners comparison were carried
ut in the curved subterranean tunnel in Luleå, Sweden. To evaluate
heir performance the following metrics were used: CPU and memory
sage, as well as an assessment of the planned path.

Both planners have been successfully planning a path to traverse
he tunnel but the path characteristics differ significantly (see Fig. 22).
∗
+ is planning the shortest path from voxel to voxel all the way to

he end voxel, resulting in a strait path with no unnecessary detours.
bplanner on the other hand is an RRT-based planner, which chooses
path leading left and right, up and down to reach a target that is
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accessible through a straight line. This approach produces less safe
paths, like for example when the path goes close to small objects or
walls as it is shown in Fig. 22(b).

Based on our field experience, small structures are not guaranteed
to be seen by the mapping algorithm so as a safety feature for the UAV
we were using the artificial potential field. It is likely that Gbplanner
would have succeeded in any way but the tendency to approach walls
and small objects were increasing the risk of collisions. Moreover, these
unnecessary movements will reduce UAV’s battery life and shorten the
maximum distance of the mission.

When we are considering the computational load, the proposed D∗
+

is mainly utilizing the CPU for building the graph, which is correlated
with the memory usage increases as depicted in Fig. 23 and Fig. 24.
During planning and the G updating, the CPU load is at approximately
10% of a single core. When it comes to resource efficiency, D∗

+ is prone
o high memory consumption. For example, in the evaluation test, D∗

+
sed 3.5 − 7.0GB of RAM, while Gbplanner used only 0.2 − 0.3GB
f RAM, as shown in Fig. 23. D∗

+ capability to replan a path on the
ly cannot be compared to Gbplanner because it does not provide
n equivalent feature. Some of the differences in performance can be
xplained by differences in those types of features that in some cases
ffects the measurable performance (see Fig. 24).

. Conclusions

In this article, a risk-aware, platform-agnostic path planner called
∗
+ has been established. As it was presented, D∗

+ utilizes a proximity
risk layer to generate a safety margin for any occupied space. The in-
troduced combination of proximity risk and unknown space treatment
is able to solve the common issue of shortcuts due to imperfections
in the map. By allowing the map to update and expand, the proposed
framework is capable of exploring and operating in a previously un-
known environment. Finally, the efficiency of the D∗

+ has been tested
in challenging real-world scenarios with both 2D and 3D planning and
it has been proven to reliably plan safe paths in all the evaluated use
cases independently of the utilized platform.

Considering large-scale and long-term missions, a potential bottle-
neck of D∗

+ is its computation time when 𝐆 is large, and as such future
work should aim to improve the computation time for large 𝐆 by
considering for example map segmentation approaches. Additionally,
another point of D∗

+ that should be addressed is the severe memory
usage. The comparison with Gbplanner showed that it is possible to
do memory-efficient path planning that does not require more compu-
tation power. This part needs to be investigated and addressed for D∗

+
while maintaining the major components of the short straight paths and
the dynamic re-planning. The above-mentioned shortcoming in general
is related to the resources required to compute 𝑃 . One direction for
lowering memory usage and possibly saving some computation time
is to change the data structure of the internal grid map 𝐆. Currently,
𝐆 is stored as an array in D∗

+ but if it is changed to an oct-tree it is
ossible that memory usage and computation time can be lowered.
nother improvement that can be considered is more types of risks,
uch as wind or slippery surfaces.
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