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Abstract
Time delays in communication networks are one of the main concerns in deploying robots with computation boards on the
edge. This article proposes a multi-stage Nonlinear Model Predictive Control (NMPC) that is capable of handling varying
network-induced time delays for establishing a control framework being able to guarantee collision-free Micro Aerial
Vehicles (MAVs) navigation. This study introduces a novel approach that considers different sampling times by a tree of
discretization scenarios contrary to the existing typical multi-stage NMPC where system uncertainties are modeled by a tree
of scenarios. Additionally, the proposed method considers adaptive weights for the multi-stage NMPC scenarios based on
the probability of time delays in the communication link. As a result of the multi-stage NMPC, the obtained optimal control
action is valid for multiple sampling times. Finally, the overall effectiveness of the proposed novel control framework is
demonstrated in various tests and different simulation environments.

Keywords Multi-stage NMPC · MAV · Network delays · Navigation

1 Introduction

The last decade the MAVs have steadily gained interest in
the fields of real-life applications, such as infrastructure
inspection [1], underground mine tunnel inspection [2], and
bridge inspection [3]. The key objective in all these use-
cases is the online collection of critical information like
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Robotic & AI team, Luleå University of Technology,
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images, 3D models, and other sensorial data to create safer
conditions for the personnel while reducing the overall
inspection time.

Fully autonomous performance of the MAVs is one of the
key challenges in deploying them in real-world applications,
while it should overcome uncertainties in localization,
limited on-board computation power, delays in control
layers, dynamic/static obstacles, etc. Meanwhile, advances
in technologies, such as 5G [4] telecommunications
technology, enable the use of cloud and edge computing
for MAV applications. In this case, the heavy computational
processing for multiple processes, such as mapping,
localization, and path planning can be carried on the edge
computing side, while retaining a fast bi-directional link
with the MAV. However, one of the main challenges in
such networked applications is the limited bandwidth, the
time delays, and the overall package losses that degrade the
overall control performance and could lead the system to
instability [5].

This article proposes a novel NMPC framework to
address the communication delays in the network. In
the proposed method, multi-stage NMPC considers the
scenario trees with different sampling times to deal with
the network’s varying delays. The proposed method takes
into account the non-linear dynamics of the MAV while
the global map and obstacles position are assumed known.
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The probability of the time delays is considered as an
adaptive weight in the scenarios of the multi-stage NMPC.
Thus, prioritizing the scenario with a higher probability and
resulting in collision-free navigation.

1.1 Background &Motivation

Many research approaches have considered the use of a
multi-stage NMPC framework in the process industry [6],
where the presence of stochastic model uncertainties can
lead to significant control performance degradation or, in
the worst case, directly affect the feasibility of the operation.
However, in the robotics community and more specifically
in the use-case of aerial robots, the mathematical translation
model of the MAV can comprehensively follow the kinematic
behavior of the MAVs [7, 8]. Therefore, the main focus is
surrounding awareness based on the equipped sensor suite.
To that end, mapping, localization, navigation, and control
are the main components for mission accomplishment. Yet,
the risk of one of these modules fail is high, for example,
the numerous path planning challenges, such as obstacles,
uncertainty in localization, noise, biases, time delays, and
other stochastic events, increasing the risk of collision and
jeopardize the mission. The proposed framework considers
network-induced time delays towards the safe navigation
of an aerial platform with embedded obstacle avoidance
capabilities.

Towards designing a computationally efficient controller
that predicts further in the future, a theoretical framework
for establishing an adaptive prediction horizon was investi-
gated in [9], where an Adaptive Horizon Model Predictive
Control (AHMPC) has been developed with a varying step
prediction horizon that depended on the deviation from the
operating point. Thus, the further from the desired states the
larger horizons steps were considered. Similarly, to decrease
the computation burden of the online optimization, in [10],
an event-based Model Predictive Control (MPC) with an
adaptive prediction horizon strategy was proposed for the
tracking of a unicycle robot. The authors proposed a con-
trol scheme that reduces the solving rate when the robot is
near the desired location. However, the event-based mech-
anism relied on the error threshold between the current
and reference states that reduced the prediction horizon and
the solving frequency and thus could not foresee further
in the prediction horizon. A study that fused varying the
prediction horizon and time-varying delays was introduced
in [11], where the authors proposed a method for utilizing
only resources that are available at a specific time instant
by adjusting the prediction horizon properly. The idea of
predicting future driving trajectory based on uncertainties
for different time horizons with the use of multiple sensors
to create a robust and trustworthy prediction system was
studied in [12].

The topic of MAV navigation and path planning is well
studied in the related literature [13, 14]. Exploration algo-
rithms like the frontier exploration algorithms [15], entropy-
based algorithms [16], and information-gain algorithms [17]
provide a global planning strategy for the MAV, while an
additional reactive control layer provides a local obsta-
cle avoidance to prevent collisions with the environment.
The most widely used reactive control layer is the artifi-
cial potential fields [18], while another approach that has
received attention in the last years is the NMPC [19], which
has been applied to perform real-time obstacle avoidance for
MAVs [20] and disturbance rejection [21]. However, all of
these methods consider fixed time steps, while in real-life
applications and especially in networked enabled MAVs the
feature of a time-varying path planning and a corresponding
controller that can take into consideration time variations is
vital for collision-free navigation.

1.2 Contributions

The first contribution stems from developing a multi-
stage NMPC for considering a tree of sampling times
while providing collision-free paths for the MAV. The
varying sampling time addresses the random delays in the
communication link between the MAV and the edge, which
results in time uncertainties in the control actions period.
In this article, the varying communication delays in the
information exchange between the MAV and the controller
are addressed by the multi-stage NMPC that is defined by
a scenario tree for different sampling times. To the best
of our knowledge, no work so far has considered different
sampling times in the multi-stage NMPC framework.

The second contribution stems from the introduction
of adaptive weights for each scenario of the proposed
multi-stage NMPC. The adaptive weights are assigned
based on the varying uncertainties of time delays as they
are stochastic in the communication link. This approach
results in realistic control strategies based on real-world
limitations.

The final contribution stems from the overall application
on a MAV use-case and the corresponding extensive
analysis of the control framework performance under
iterative simulations. As it will be presented in the
sequel, the proposed control scheme enables collision-free
navigation in an obstacle environment, while the generated
path distance is reduced in comparison to a fixed sampling
time NMPC scheme for path planning.

1.3 Outline

The rest of this article is structured as follows. In
Section 2 the research problem is defined, while highlight-
ing the challenges and limitations. Section 3 provides the
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Fig. 1 Control scheme of the proposed multi-stage NMPC module, where the control actions u based on sensor information is obtained in the
cloud, and the low-level controller on the MAV generates motor commands n. The x is state of the system, xr is reference value, and x̂ is estimated
state

non-linear model of a MAV, the theoretical control frame-
work and the formulation of the optimization problem. The
simulation specifics and results are provided in Section 4,
while concluding remarks and future work are discussed in
Section 5.

2 Problem Statement

When a networked control scheme is considered for
the control of a MAV the network-induced time delays
directly affect the state estimation and the control actions
sampling time. Thus this article will propose a multi-
stage NMPC that considers the varying sampling times and
establish a collision-free path planner. Figure 1 illustrates
the proposed concept while highlighting the overall system
architecture. The high-level planner generates references
xr for the multi-stage NMPC, the controller provides
actions u for the low-level controller, and the low-level
controller feeds the motor commands n = {ni , i ∈
N

≥4} to the MAV. From the moment the controller
sends the next control output until the controller observes
the changes, numerous causes are associated with a
delay like signal transmission, computation time, sensors
measurement acquisition, measurement digitalization, etc.
However, this article looks only at delays caused by network

signal transmission and the following two assumptions
are made:

Assumption 1 The delays affecting the system are trans-
mission delays in the communication link and not process-
ing delays.

Assumption 2 The transmission delays between the low-
level controller and the system are negligible.

3Multi-Stage Nonlinear Model
Predictive Control

3.1 MAV Dynamics

In this article, the six Degree of Freedom (DoF) dynamics of
a MAV are considered as defined in the body frame (Fig. 2)
and modelled by Eq. 1:

ṗ(t) = v(t) (1a)

v̇(t) = Rx,y(θ, φ)

[
0
0
T

]
+

[
0
0

−g

]
−

[
Ax 0 0
0 Ay 0
0 0 Az

]
v(t), (1b)

φ̇(t) = 1/τφ(Kφφd(t) − φ(t)), (1c)

θ̇ (t) = 1/τθ (Kθθd(t) − θ(t)), (1d)

Fig. 2 Illustration of the MAV
with the attached body fixed
frame B and inertial frame E
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where p = [px, py, pz]� ∈ R
3 is the position vector

and v = [vx, vy, vz]� ∈ R
3 is the vector of linear

velocities, φ, θ ∈ R ∩ [−π, π] are the roll and pitch angles
respectively, Rx,y is the rotation matrix about the x and
y axes, T ∈ [0, 1] ∩ R is the mass-normalized thrust,
g is the gravitational acceleration, Ax, Ay and Az ∈ R

are the normalized mass drag coefficients. The low-level
control system is approximated by first-order dynamics
driven by the reference roll and pitch angles φd and
θd with gains of Kφ, Kθ ∈ R

+ and time constants of
τφ, τθ ∈ R

+ respectively.

3.2 Objective Function

The system states are x = [p, v, φ, θ ]� and the control
input is denoted by u = [T , φd, θd ]�. To obtain a discrete-
time dynamical system at time instance k ∈ Z

+, the model
expressed by Eq. 1 is discretization by the Euler method and
with a sampling time of ts as:

xk+1 = f (xk, uk). (2)

The NMPC approach solves a finite-horizon problem
at every time instant k with the prediction horizon of
N ∈ N

≥2. The states and control actions are expressed
by xk+j+1|k , and uk+j |k respectively for k + j, ∀j ∈
{0, 1, . . . , N − 1} steps ahead from the current time step
k. The purpose of the NMPC is the tracking of a reference
state xr = [pr , vr , φr , θr ]� by generating the desired thrust
T and angles φd , θd commands for the attitude controller,
while guaranteeing a safety distance from a priori known
obstacles. For this purpose, the finite horizon cost function
can be written as:

J =
N−1∑
j=0

‖xk+j+1|k − xr‖2Qx︸ ︷︷ ︸
tracking error

+ ‖uk+j+1|k − ur‖2Qu︸ ︷︷ ︸
actuation

+ ‖uk+j |k − uk+j−1|k‖2Q�u︸ ︷︷ ︸
smoothness cost

.

(3)

The objective function consists of three terms. The first term
ensures the tracking of the desired states xr by minimizing
the deviation from the current states. The second term,
penalizes the deviation from the hover thrust with horizontal
roll and pitch, where ur is [g, 0, 0]�. The last term
tracks the aggressiveness of the obtained control actions.
In addition, the weights of the objective function’s terms
are denoted as Qx ∈ R

8×8, Qu ∈ R
3×3 and Q�u ∈

R
3×3 respectively, which reflect the relative importance of

each term.

3.3 Constraints

3.3.1 Cylinder Obstacles

There are different types of obstacles in the surrounding
environment, nonetheless all these types of obstacles can be
categorized to three types as cylindrical shapes, polytope
surfaces, and constrained entrances [22]. In this work, we
mainly target the cylinder-shaped obstacles. The constraints
are defined in parametric form and their positions are fed
directly to the NMPC scheme [23]. When the MAV is
outside the obstacle, the associated cost is forced to be zero
and for that purpose the function max(h, 0) = [h]+ is
utilized. With the proper selection of the h expression, the
constrained area is negative outside the obstacle and positive
inside of it.

In case of a cylinder obstacle, the two equations for the
safety radius hc and the maximum altitude allowance hzmax

are defined based on the center position (xobs, yobs), the
radius robs and the height zobs of the cylinder as follows:

hc = r2obs − (
xk+j |k − xobs

)2 − (
yk+j |k − yobs

)2
, (4a)

hzmax = zobs − zk+j |k . (4b)

By multiplication of Eqs. 4a and 4b the cylinder
constraint is defined as:

Cc =
N∑

j=0

[hc]+
[
hzmax

]
+ = 0. (5)

3.3.2 Input Constraint

Additionally the inputs are constrained within specific
boundaries in the following form:

umin ≤ u ≤ umax, (6)

where the lower bound umin = [Tmin, φmin, θmin]� and
the upper bound umax = [Tmax, φmax, θmax]� denote the
minimum and maximum values the control actions can take.

3.4 Multi-Stage NMPC

Most of the multi-stage NMPC methods model the
uncertainties by a tree of scenarios [24]. In our case,
each scenario is defined based on different sampling times
t is , i ∈ {1, . . . ,M} and not model uncertainties. The overall
framework is used to mitigate communication delays that
make uncertain the control action period u. However, if
the network delays are infinitely large, it would not be
possible to account for them either way. For that reason, the
following assumption is made:

Assumption 3 Delays caused by the communication link
are bounded in a known range and can be mitigated by
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different sampling times as they affect the control action
period.

The different sampling times are used to find a unique
solution u that satisfies a constrained optimization for
all sampling times so that communication delays are
mitigated. To that end, we define sampling time upper and
lower bounds in the range of [tmin

s , tmax
s ]. Based on these

bounds and our defined sampling times, each branch of
the tree is made as depicted in Fig. 3. Our method varies
drastically from the traditional move blocking strategy [25]
for model-based control problems that fix the input for
several time steps. In the proposed multi-stage framework,
the u is the same in all branches of the tree, which
means that the obtained control action can satisfy all the
sampling times.

The multi-stage NMPC objective function based on the
classic NMPC cost Eq. 3 denoted here as Ji for the M ∈ N

scenarios can be formulated as follows:

min
{uk+j |k}N−1

j=0

M∑
i=1

ωiJi ∀i ∈ {1, . . . , M} (7a)

s.t. xk+j+1|k = fi

(
xk+j |k, uk+j |k

)
, (7b)

Constraints (5), (6). (7c)

To consider uncertainties in delays, the term ωi defines
the weight of each scenario objective function of the multi-
stage NMPC. The ωi is updated based on the probability of

the delays. To estimate the ωi adaptive term, the network
transmission delays are stored in a finite buffer as follows:

td = {(td,1, . . . , td,l), l ∈ {k − (nmax − 1), . . . , k}}, (8)

where td is a single communication delay and nmax is the
limited window size of stored network delays. Furthermore,
it is assumed that the communication delays that affect
the control framework are following a Gamma distribution.
Initially, the shape α and scale parameters β of the Gamma
distribution are calculated from the mean μ and the standard
deviation σ of set td as:

α = μ2

σ 2
, β = σ 2

μ
. (9)

The probability of a single random delay t id from a Gamma
distribution with parameters α, β falls in the interval [0, td ]
and is given from the Cumulative Distribution Function
(CDF) [26] as:

G(td; α, β) = 1

βα�(α)

∫ td

0
xa−1e

−x
β dx, (10)

where �(·) is the Gamma function [26]. Based on the
obtained probabilities for the selected span of delays, the ωi

for each branch of the tree is derived as follows:

ωi =
{

G
(
t1d ; α, β

)
if i = 1

G
(
t id; α, β

) − G
(
t i−1
d ; α, β

)
, if i ∈ {2, . . . , M}

(11)

At each time step, the multi-stage NMPC generates an
optimal sequence of control actions u�

k|k , . . . , u�
k+N−1|k ,

Fig. 3 Illustration of the
scenario tree with different
sampling times
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and only the first control action u�
k|k is applied based

on a zero-order hold element as u(t) = u�
k|k for

t ∈ [kts, (k + 1)ts].
The developed multi-stage NMPC with 3D collision

avoidance constraints, is solved with Proximal Averaged
Newton-type method for Optimal Control (PANOC) [27] to
guarantee a real-time performance. In the related literature
for solving the multi-stage NMPC optimization problem,
algorithmic procedures are used [28] relying on solving
each of the scenarios independently until the solutions
converge and the constraints are satisfied. To this extent, a
large optimization problem can be solved in a reasonable
amount of time. In contrast, in this article, we attempt a one-
shot solution by taking advantage of the PANOC solving
capabilities. Thus, a single cost function is built for the
M discrete scenarios, under a set of constraints. In such
a manner, the solution of the multi-stage NMPC problem
satisfies all the scenarios and constraints.

The more scenarios M are considered, the larger the
optimization problem will be. Thus, as it can become
apparent from Eq. 7 as the objective function increases, the
computation time will increase. Considering the bounded
delays [0, tmax

d ] and the defined sampling time limits
[tmin

s , tmax
s ] the M sampling time scenarios are defined

based on the Assumption 4. The threshold value ε in
this work is considered a tuning parameter, and it is set
empirically and does not need to be uniform across all the
M scenarios.

Assumption 4 An NMPC control action u that satisfies the
constraints for sampling times t is and t i+1

s with i ∈ N will
satisfy the constraints for all sampling times within [t is , t i+1

s ]
given that t i+1

s − t is ≤ ε where ε is a threshold value.

This method considers a high-level planner that provides
the reference xr states and a-priori obstacles’ global
position, size, and shape. The NMPC or MS-NMPC
generates roll, pitch, and thrust commands to minimize
the error between the xr and x while satisfying the
collision constraints. Updating the position of the obstacles
the control commands will be changed and consequently,
the path followed by the platform will be different. The
challenge of identifying the position and size of an obstacle
can be tackled by various methods like [29] or [30]. Finally,
this method is designed to support cylindrical obstacles
but it can be extended to different shapes with a similar
formulation as the one presented in Section 3.3.1.

4 Results

The simulation trials were running on a single core to solve
the optimization problem and they performed in a personal

computer with an Intel(R) Core(TM) i7-8550U @ 1.8Ghz
processor with 16GB of RAM.

4.1 Simulation Setup

Out of the numerous simulations, three representative cases
are selected to prove the performance of the proposed
control scheme. For consistent results, data of delays
generated from a Gamma distribution �(α, β) with shape
factor α = 12 and scale factor β = 0.015 is used
for all the simulation trials. During the simulations, the
eight states of the MAV considered measurable and were
updated based on the communication delays i.e. for the
duration of a delay, the cloud computing controller has no
knowledge of the states’ evolution and the MAV maintains
the last control input, while in MAV’s side (Fig. 1),
no delay is considered between low-level controller and
the platform.

Two environments and three simulation trials are chosen
to demonstrate the main attributes of the proposed control
framework. The first environment includes a single large
cylinder obstacle, where the performance of the multi-
stage NMPC is compared with the standard NMPC under
the presence of communication delays for navigating to a
desired location, while the path is obstructed by the cylinder.
By standard NMPC is defined the solution of Eq. 7a for
M = 1, ωi = 1 and solved at nominal ts . It should be noted
that only the desired point is provided for the multi-stage
NMPC and NMPC and the controller is generating collision
free paths. For the second and the third simulation trials, a
more complex environment is selected with three cylinders
of different sizes. Same as in the first case, we compare
the performance of the multi-stage NMPC and the NMPC
under the presence of varying communication delays, while
trying to reach a desired location avoiding collision with the
three cylinders. Finally, we compare the performance of the
multi-stage NMPC and the NMPC in the same environment
without communication delays to demonstrate the better
path planning of the proposed controller with a collision
avoidance capability due to the consideration of higher
sampling times.

Figure 4 shows the delay data during the single obstacle
simulation trial (Top), while inside the same illustration
the histogram of the complete delays data-set is presented.
Furthermore, the calculated probabilities for specific delays
in logarithmic scale are given in Fig. 4 (Bottom).

The parameters of the non-linear MAV model are the
mass m = 1 kg, the gravitational acceleration g =
9.81m/s2, the mass normalized drag coefficients Ax, Ay =
0.1 and Az = 0.2, and the time constants tφ, tθ = 0.5 sec
with gains Kφ, Kθ = 1. The prediction horizon N is 40,
the nominal sampling time is ts = 0.05 sec, while the multi-
stage NMPC considers sampling times scenarios in seconds
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Fig. 4 Communication delays
of the single cylinder obstacle
simulation trial and histogram of
the complete data of delays
(Top). Calculated weights ωi of
the same simulation trial
(Bottom)

of ts = [0.05, 0.07, 0.1, 0.2, 0.33]. The roll and pitch angles
are constrained within [−π/18 ≤ φ, θ ≤ π/18], rad.

On account of the different simulation environments, the
tuning weight parameters of the controller Qx and Qu vary
among the simulations and the numerical values will be
given in the sequel.

4.2 Single Cylinder Obstacle Under
Communication Delays

For the first case, as depicted in Fig. 5 a cylinder obstacle
of radius 1.5m and height 10m located at x, y [(0, 6)]m
is considered, while it is obstructing the straight path
from the initial position pinit = [0, 0, 0], m to the
desire goal position pgoal = [0, 9, 1], m. For a better
illustration, the obstacle in Fig. 5 is limited in the range
of 0 to 1.25m. The weights of the states are Qx =
diag[6, 6, 20, 50, 50, 10, 20, 20], while the control action
weights are Qu = diag[20, 20, 20] and for the input rate of
change are Q�u = diag[40, 65, 65].

Fig. 5 Performance comparison of the multi-stage NMPC versus
NMPC navigation under the effect of delays in presence of a cylinder
obstacle
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In Fig. 5 the multi-stage NMPC successfully regulates
the control inputs and the MAV navigates to the desired
location despite the effect of delays. On the other hand,
with the same weights and delays the NMPC stops in a
local minimal at approximately p = [0, 5, 1],m. Since, the
multi-stage NMPC considers higher sampling times, at most
t5s = [0.33] sec with the prediction horizon of 40 steps it
can predict 13.2 seconds in the future when compared to
the minimum sampling time scenario of t1s = 0.05 seconds,
which predicts at most up to the next 2 seconds.

Finally, for the first case the control actions roll pitch and
thrust for both tested controllers is presented in Fig. 6. It can
be noticed that the multi-stage NMPC starts aggressively in
the beginning but as approaches the desired location the roll
and pitch angles are getting smoother. On the other hand, the
NMPC almost immediately falls into shacking issues due to
the delays, something that could be observed in the Fig. 5
as well. Both the multi-stage and classic NMPC provide
solutions that do not violate the given constraints denoted
by light-grey dashed line in Fig. 6. For the thrust, the NMPC
is observed to be more aggressive when compared to the
multi-stage NMPC but both controllers successfully manage
to regulate the height at 1m.

4.3 Multiple Cylinder Obstacles Under
Communication Delays

For the second case three cylinder obstacles of radius 0.25,
0.4 and 0.5m are located at x, y (3.5, 1.5) (2.8, 3.0) and
(4.3, 4.1)m respectively of [10]m height obstructing
MAV’s path from the initial position pinit = [3.2, 0, 0]m
to the goal position pgoal = [3.2, 5, 1]m. As in the
previous cases and for visualization purposes, the z-axis in
Fig. 7, is limited between 0 and [1.25]m. The tuning of the
controllers is Qx = diag[12.5, 12.5, 20, 30, 30, 10, 20, 20],
while the control input weights are Qu = diag[20, 20, 20]
and the weight of the smoothness term is Q�u =
diag[40, 165, 165].

Figure 7 illustrates the path followed by the multi-
stage NMPC (solid line) and the NMPC (dashed line).
Both controllers manage to navigate to the goal location.
The multi-stage NMPC path is characterized to be more
smooth compared to the NMPC path, something that can
be observed by the smaller changes in x, y and z positions,
as well as in the control actions in Fig. 8. The multi-
stage controller manages to regulate the height steadily
to the reference point in contrast to the NMPC, which

Fig. 6 Control action responses
of roll, pitch and Thrust under
the effect of communication
delays in presence of a cylinder
obstacle for multi-stage NMPC
and NMPC
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Fig. 7 Performance comparison of the multi-stage NMPC versus
NMPC navigation under the effect of delays in presence of multiple
cylinder obstacles

overshoots and undershoots in the beginning mainly due to
the existence of the delays.

The roll, pitch and thrust commands of the second
simulation are given in Fig. 8. For the NMPC the φ and θ

are oscillating in the range ±0.1 rad for almost the entire
time response. In contrast, the multi-stage NMPC appears to
be affected less by the communication delays and results in
much smoother control actions. It is noticeable that NMPC
even if it manages to drive the MAV to the final position its
path response is more aggressive as the MAV drifts from the
expected position due to the delays. On the other hand, the
multi-stage NMPC results in a much smoother navigation
path. This can be also identified in the altitude commands,
where the control signal of the NMPC changes abruptly
at the beginning of the response and this is causing the
platform to overshoot and undershoot in the height response
as well.

4.4 Multiple Cylinder Obstacles
Without Communication Delays

For the final test, the simulation tuning and constraints are
identical to the second simulation, while no time delay
is considered (td = 0). The multi-stage probability is
kept constant at ωi = [0.05, 0.15, 0.45, 0.30, 0.05] for the
sampling times of t s = [0.05, 0.07, 0.1, 0.2, 0.33], sec.
Thus, the higher the sampling time is the further in the
future we predict for achieving an improved path planning.
As depicted in Fig. 9, under the absence of time delays both

Fig. 8 Multi-stage NMPC and
NMPC control actions roll, pitch
and thrust under the effect of
delays in presence of multiple
cylinder obstacles
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Fig. 9 Performance comparison of the multi-stage NMPC versus the
NMPC navigation for td = 0 in presence of multiple cylinder obstacles

controllers successfully reach to the destination point with
smooth maneuvers avoiding the obstacle from shorter path
in comparison to the previous simulation. Even in this case,
as it is presented in Table 1, the multi-stage NMPC results
in a shorter path compared to the NMPC, while this time
the difference between the two navigation performances
is smaller.

Figure 10 presents the φ, θ and T actions of the last
simulation under zero communication delays. The multi-
stage NMPC appears to be more resilient to the control input
changes and thus resulting to smaller variations from the
hover position. In comparison to Fig. 8 from the previous
simulation, all the signal responses are smooth, indicating
the intense effect of the delays on the aerial platform.

Finally, in Tables 1 and 2 a comparison of the path length
and mean computation time between the proposed multi-
stage NMPC is presented. For all the simulation trials, the
distance from the initial point to the goal point is shorter
for the multi-stage NMPC. As far as the computation time
is concerned, the NMPC has a lower mean computation
time as expected due to the smaller size of the optimization
problem, but it must be highlighted that the NMPC fails
to overcome the obstacle in the first simulation and it

Table 1 Comparison of the path length between the proposed multi-
stage NMPC and the path from NMPC

Scenario Simulation 1 Simulation 2 Simulation 3

NMPC 6.451[m] 8.99 [m] 5.75 [m]

Multi-stage NMPC 9.75 [m] 6.18 [m] 5.46 [m]

1Failed to reach final destination

has an overall lower performance in the second and third
simulation. Furthermore, the computation time of the multi-
stage NMPC is fast enough since typical path planners
operate at a sampling rate of 50ms.

4.5 Multiple Cylinder Obstacles
with Communication Delays
and External Disturbances

Another approach to tackle the communication delays
would be to design a controller with a sampling time that
matches the largest delay possible that can be observed.
However, while this design theoretically can provide
better results against the delays, it makes the system less
responsive to disturbances and localization uncertainties.
While a controller design approach like this would have
been probably suitable for systems in the process industry
that have large time constants, for MAVs that are inherently
unstable and have low time constants, it would not be
operational in practice. In our proposed framework, we
want the system to run to the nominal (lowest) sampling
time, but if a delay occurs, the controller should be able
to compensate, so we utilize adaptable weights for each
scenario instead of fixed weights.

To showcase in a preliminary approach, that a slower
controller makes the system less responsive the simulation
trial in Section 4.3 is re-used. The main difference is
an instantaneous additive disturbance for half a second.
The disturbance is formulated as a wind gust of 1.5
m/s acting on the y-axis of the platform in Eq. 1b. The
disturbance is introduced at the time instant in both trials.
As it can be noticed in Fig. 11 the NMPC sampled at
0.33 s results in a very smooth trajectory, and it is not
affected by the delays. However, when the disturbance was
introduced could not compensate for this dynamic change
and violated the third cylinder obstacle constraint, and the
simulation resulted in a collision. On the other hand, the
multi-stage NMPC trajectory is less smooth and overall
more aggressive; nevertheless, when the disturbance was
introduced while affecting the flight performance, it did not
result in collision and constraint violation. This comparison
shows the advantage of a fast controller while considering
the slower cases at the same time.

5 Conclusions

This article proposed a novel multi-stage NMPC framework
for collision-free navigation of MAV under the effect of
time delays in the communication network. The multi-
stage NMPC scenarios were based on different sampling
times and varying weights derived from the communication
delays. The proposed control scheme was evaluated under
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Fig. 10 Multi-stage NMPC and
NMPC control actions of roll,
pitch and thrust for td = 0 in
presence of multiple cylinder
obstacles

multiple simulations for different numbers of obstacles
and variable communication delays. More specifically, the
multi-stage was able to compensate for the network delays
and navigate to the final point avoiding the cylinder obstacle
that obstructed its path, while the classic NMPC failed to
reach the desired point. The navigation in the environment
with three obstacles without delays is considered, where the
multi-stage NMPC presented a smoother motion and fewer
fluctuations in the control actions compared to the classic
NMPC, while with both controllers the MAV successfully
navigated from the initial point to the final point. For
all the aforementioned cases, the generated paths were
shorter compared to the fixed sampling rate NMPC. Lastly,
even tough the mean computation time of the multi-stage
controller was higher compared to the NMPC, it is lower
than shortest sampling time and the multi-stage control
shows better performance in generating collision free paths.

Table 2 Comparison of the average computation time between the
proposed multi-stage NMPC and the classic NMPC

Scenario Simulation 1 Simulation 2 Simulation 3

NMPC 15.1 [ms] 4.3 [ms] 1.6 [ms]

Multi-stage NMPC 20.5 [ms] 48.1 [ms] 19.7 [ms]

While future studies will provide experimental results
with a 5G enabled MAV platform for collision-free naviga-
tion in urban environments the Input-to-State Stability (ISS)

Fig. 11 Performance comparison of the multi-stage NMPC versus
the NMPC sampled at 0.33 s under the effect of delays and an
instantaneous external disturbance for half a second at 1.5 m/s
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and recursive feasibility of the proposed method remains
unexplored. The authors of [31] provide a method to achieve
deterministic ISS and recursive feasibility, which otherwise
cannot be guaranteed for the multi-stage NMPC scheme.
However, our proposed approach varies extensively as we
assume the nonlinear system xk+1 = f (x

j
k , u

j
k ) with mul-

tiple sampling times while [31] considers the nonlinear
system xk+1 = f (x

j
k , u

j
k , wk)wherew are disturbances. As

part of our future work, we will investigate ISS by making
the necessary adaptation in the proposed approach of [31]
while utilizing stability analysis methods for systems with
aperiodic sampling a concept presented in [32] and matches
well our proposed framework.
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of Technology, Sweden. In the past he was also affiliated with the
NASA Jet Propulsion Laboratory (JPL) at Pasadena, California for
contacting collaborative research on Aerial Planetary Exploration,
where his team participated in the DARPA Grand challenge on Sub-
T exploration with the COSTAR team of NASA and won the second
stage of the competition in February 2020. George is also a member
of the Board of Directors at euRobotics, as a member of the Scientific
Council of ARTEMIS in the field of Robotics and AI and member
of the IFAC TC on Robotics. George is also an elected expert for the
permanent working group (PWG) of A.SPIRE with a focus on Process
Optimisation and Ultra Carbon Coal as well as an elected member on
the Aeneas-XECS in embedded control systems.

Page 13 of 13    33J Intell Robot Syst (2023) 107:33

https://doi.org/10.23919/ECC.2019.8796236
https://doi.org/10.1109/CDC.2004.1430345
https://doi.org/10.1109/CDC.2004.1430345
https://doi.org/10.1016/j.sysconle.2020.104743
https://doi.org/10.1016/j.sysconle.2020.104743
https://doi.org/10.1016/j.automatica.2016.10.023
https://doi.org/10.1016/j.automatica.2016.10.023

	Multi-Stage NMPC for a MAV based Collision Free Navigation Under Varying Communication Delays
	Abstract
	Introduction
	Background & Motivation
	Contributions
	Outline

	Problem Statement
	Multi-Stage Nonlinear Model Predictive Control
	MAV Dynamics
	Objective Function
	Constraints
	Cylinder Obstacles
	Input Constraint

	Multi-Stage NMPC

	Results
	Simulation Setup
	Single Cylinder Obstacle Under Communication Delays
	Multiple Cylinder Obstacles Under Communication Delays
	Multiple Cylinder Obstacles Without Communication Delays
	Multiple Cylinder Obstacles with Communication Delays and External Disturbances

	Conclusions
	Declarations
	References


