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A procedure to recognize individual discontinuities in rock mass from measurement while drilling
(MWD) technology is developed, using the binary pattern of structural rock characteristics obtained from
in-hole images for calibration. Data from two underground operations with different drilling technology
and different rock mass characteristics are considered, which generalizes the application of the method-
ology to different sites and ensures the full operational integration of MWD data analysis. Two
approaches are followed for site-specific structural model building: a discontinuity index (DI) built from
variations in MWD parameters, and a machine learning (ML) classifier as function of the drilling param-
eters and their variability. The prediction ability of the models is quantitatively assessed as the rate of
recognition of discontinuities observed in borehole logs. Differences between the parameters involved
in the models for each site, and differences in their weights, highlight the site-dependence of the result-
ing models. The ML approach offers better performance than the classical DI, with recognition rates in the
range 89% to 96%. However, the simpler DI still yields fairly accurate results, with recognition rates 70% to
90%. These results validate the adaptive MWD-based methodology as an engineering solution to predict
rock structural condition in underground mining operations.
� 2023 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A comprehensive knowledge and characterization of the rock
mass is crucial in the design and planning stages of an under-
ground mining operation. In short term planning, ore extraction
activities are scheduled according to production requirements,
their performance improvement being a key process for the subse-
quent downstream operations and ore processing. To this, produc-
tion drilling can provide specific information of the structural
condition of the rock mass, which further can be applied to adapt
blast [1] and ground support designs [2].

Measurement-while-drilling (MWD) technology provides real-
time measurements of operational parameters from drilling rigs,
which can be regarded as the response of the rock mass during this
operation [3] hence dependent on the geotechnic context of the
mine. Relevant works in the area have studied the relations
between drilling parameters and the characteristics of the rock
mass, proposing analytical prediction models based on the charac-
teristics of the site and the drill rigs used [4–7]. As these models
have been proposed for the specific drilling parameters and geo-
logical context of the sites assessed, a universal model or formula
based on drilling parameters that can be applied to any mine with
relevant prediction ability does not exist. Hence, the development
of a methodology that could be broadly integrated is of particular
interest to extend the application of MWD technology in mining.
Recent international research projects to develop sustainable and
intelligent comprehensive rock mass characterization applying
MWD technology [8–10] have pointed at machine learning (ML)
techniques as cutting-edge solutions for data analysis. These tech-
niques are increasingly being used in the analysis of drill monitor-
ing datasets [11]. Additional geotechnical data from expert
geological analysis to identify discontinuities is instrumental at
this point in order to derive the complex relations between drilling
parameters and rock mass characteristics.

The purpose of this work is the definition of a comprehensive
methodology based on drilling monitoring data analysis to recog-
nize with high accuracy the structural condition of the rock mass.
The outcome of this process is a dynamic prediction model formu-
lated for the specific characteristics of the mine site. The validation
under-
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of this methodology was carried out by its capacity to detect dis-
continuities from MWD records for two underground mines in
which the boreholes were further inspected with two different sys-
tems, like optical televiewer and digital endoscope. Previous liter-
ature shows that no research has explored the application of a
general model based on MWD parameters for different drilling
technologies. To this, it should be added that no work to date has
used production drilling data from underground mining to predict
the occurrence of individual discontinuities nor the quality of the
detection has been quantitatively rated. On the contrary, qualita-
tive, and visual evaluation has been used in the validation of the
classification models of the rock mass into zones with different
fracture levels [12]. Regarding the validation context, most of the
conclusions about categorization of drilling parameters for rock
features recognition derive from tests in laboratory or in mine
under a controlled space [13–16], the present work being the first
to quantify and validate the performance of MWD-based models in
production environments for two different underground opera-
tional contexts. In addition, the application of ML techniques to
MWD data has never focused on the detection of individual discon-
tinuities, in this case using geological input data for training, while
model performance has been only presented to predict rock mass
rating or ore grade by ML approaches [17,18].

A combination of a hybrid ensemble algorithm and a resam-
pling technique has been applied [19] for classification of rock
mass discontinuity traces with imbalanced categories in the data-
sets; this combination of techniques is followed in this work on
drilling data, a novelty in this field.
2. Background

2.1. Drill monitoring

This technology was initially developed in the oil industry and
later applied to exploration drilling with the objective of measur-
ing mechanical properties of the rock, together with hole path data
as azimuth and dip, through sensors installed near the bit, for
depths of several kilometers [3]. Later, this logging technology
was adapted to smaller borehole diameters and roto-percussive
rigs used in civil construction works, as tunnelling [2,20–22], min-
ing and quarrying [23] both open pit [18,24–26] and underground
exploitations [6,12].

MWD technology provides a dense cloud of data samples when
collected from several drillholes, allowing the on-site recognition
of rock characteristics that further can be used for downstream
operations. The interpretation of drilling data requires further pro-
cessing of the recorded signals [27,28] to eliminate the effects
unrelated to rock mass properties. To help in this, direct measure-
ments of the rock characteristics like in-borehole inspection with
optical televiewer or endoscope, analysis- while -drilling (AWD),
or in-situ strength measurements such as the Schmidt hammer
[24,28,29] may be used to calibrate an index based on the recorded
signals.

In mining, MWD has been used to investigate rock mass condi-
tion through the recognition of discontinuities, fracturing density
or different lithologies, and their effect on blast design or over or
under-excavation results [21,26,29–31]. This is performed by com-
bining drill parameters when the goal is the assessment of rock
mass strength [32], or by including variations in the drilling sig-
nals, for analysis of the structural condition of the rock mass
[7,27]. For rotary-percussive drilling, the parameters are classified
as independent or dependent regarding the influences of the geo-
logical features of the rock in the drill rig [24,33,34]. The first type
comprises parameters like feed pressure (FP), percussive pressure
(PP) and rotation speed (RS), which are influenced only by drill
2

rig capacity, drilling technique, and drill rig control system, while
penetration rate (PR), rotation pressure (RP), damp pressure (DP)
and water pressure (WP) depend on the previous group of param-
eters and also on how drilling reacts to the characteristics of the
rock mass. These dependent drill parameters have been commonly
used to correlate with the characteristics of the rock, although both
independent and dependent drilling parameters respond to rock
structural or strength changes [20,27], being their inclusion into
an index relatively site dependent.

Insights about the use of drilling parameters for fracturing con-
dition detection have pointed in some cases at FP as a good detec-
tor of anomalies or discontinuities in the rock [16]. An increase of
the PP may indicate strong fracturing [20]. PR and RP are pointed as
the parameters that respond with significant fluctuations in their
signals when the drilling bit crosses a discontinuity [6]. WP also
shows a large variability due to the presence of open fractures or
inflow water zones [33]. It should be highlighted, however, that
the responses and fluctuations in the drill parameters depend on
the geotechnical context of the operation, and the characteristics
of the drilling equipment.

To formulate a general model for fracturing level prediction,
some authors combine with the same weights the variance of drill
parameters as RP and PR [6,12] or FP, PP, and RP [23], into a single
structural parameter called fracturing or discontinuity index (DI).
To illustrate this, the more recent index [7] is defined at the sample
point i as:

DIi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

PRvar;i � PRvar

stdPRvar

 !2

þ 0:5
RPvar;i � RPvar

stdRPvar

 !2
vuut

with i ¼ 1; 2; � � � ; L
ð1Þ

where PRvar;i is PR variability; RPvar;i RP variability (calculated as the
moving variance), at each sample point i; L the number of points;
PRvar the mean of the PR variability; stdPRvar standard deviation of
the PR variability; RPvar the mean of the RP variability; and
stdRPvar standard deviation of the RP variability.

Principal component analysis is applied in some works to
extract a linear combination of drilling parameters, their variations
and the DI to describe the response of the drill rig to discontinu-
ities. The predictive capacity of these models is usually evaluated
qualitatively from visual correlations between block models and
geological mapping of the rock mass characteristics [6,7,12], and
no quantitative measurement of the model performance is given.
This prevents a sound comparison of the predictive accuracy of dif-
ferent models and limits their application to new datasets, so that
they are seldom used for the design and execution of subsequent
operations such as blast design and explosives charging.

2.2. Machine learning applications for drilling data

In recent years, ML techniques have been applied to solve
highly complex nonlinear engineering problems in mining such
as the selection of mining method, rock mechanics and blast design
parameters and hazards evaluation [35]. In this line, most of the
research on the application of ML for MWD data from mining aims
to relate rock mass quality indices such as Rock Mass Rating (RMR),
Geological Strength Index (GSI) or Barton’s Q with drilling param-
eters [17,36,37] or with ore grade prediction [18].

The main aspects for the use of ML for MWD data are the num-
ber of features that defines the dimensionality of the data set and
the quality of this data. Consequently, expert analysis from endo-
scope or televiewer records for structural assessment is suitable
to be used as target for supervised learning. From these records,
an imbalanced class distribution [38,39] may be obtained in rock
mass structural categorization problems for a case e.g., of massive
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rock with few discontinuities. As this will affect the model perfor-
mance, especially to the prediction of less abundant classes, three
approaches are generally followed: (i) re-sampling the original
dataset by over-sampling the minority class, under-sampling the
majority class [38,39], or blending under-sampling with over-
sampling [40]; (ii) assigning weights to training examples [41];
or (iii) using ensemble learning methods by combining several
models, as boosting-based or bagging algorithms, which resample
the original data to provide balanced classes, and improve the per-
formance of single classifiers [42,43].

For ML models, the characteristics of the datasets, and specifi-
cally the amount of data in each category are relevant for obtaining
a low generalization error (i.e., accuracy of the algorithm to predict
from unseen data) and a low variance when a different dataset is
used. Most classification algorithms usually predict accurately
samples of the controlling class, resulting in high prediction accu-
racies for training and testing, while samples of the less abundant
classes will be misclassified. A good performance and generaliza-
tion of the model is defined by the optimal capacity where both
bias and variance are low [44]. For this, a sample dataset to train
and validate the model and another to test or estimate its perfor-
mance on unseen data are used; these sets correspond typically
to 80% and 20% of the available data [45]. For this purpose, it is also
important to provide a good validation scheme to evaluate ML
models on a limited data sample. The k-fold cross-validation algo-
rithm [46] is a common scheme used for model validation to
increase the number of samples used for teaching the model and
to reduce the randomness of the training and validation data
selected. This contributes also to optimizing the bias-variance
trade-off and preventing overfitting [47].

Among ML techniques, ensemble learning methods are being
widely used for classifications problems, since they improve the
predictive power of the learning systems by combining many basic
models (weak learners), as decision trees or k-neighbors, and
including random resampling of the data [48,49]. These
approaches are usually even more effective when fast algorithms
such as classification and regression trees are used [50]. Tech-
Fig. 1. Methodology for rock st
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niques as bagging or boosting have been used to generate predic-
tion models based on drill features to assess rock mass quality
[51,52]. Recent research work on different mining-related topics
have applied the bagging technique through the Random Forest
(RF) algorithm for regression and classification problems [19], the
bagging technique having been pointed as very suitable for classi-
fication problems with binary data, showing robustness against
class imbalance [43,53].
3. Data and model formulation

Fig. 1 summarizes the main steps of the process to generate the
dynamic model for the prediction of the structural condition of the
rock from MWD and geotechnical data.

Drill monitoring information is recorded in two underground
mining operations (Lújar and Zinkgruvan) from production drilling,
comprising MWD records and accompanying data from in-hole
inspection. This database includes the signals generated from
two rigs, an old retrofitted jumbo in Lújar and a modern unit with
factory installed MWD technology in Zinkgruvan, which means dif-
ferent automation and control features of each rig control systems.
Drilling data is processed according to current filtering and nor-
malization methods [27,28], to further correlate it with the discon-
tinuities observed in the same borehole. A novel method is
proposed to describe quantitatively the condition of presence
and absence of discontinuities as a binary sequence. These data
are used to identify discontinuities using both a classical method
based on the fracturing or discontinuity index and ML techniques.
This allows to compare the classification accuracy in defining the
optimum structural model of both approaches.
3.1. Mine sites and data overview

Field measurements were gathered in Zinkgruvan and Lújar
underground mines. Zinkgruvan is owned by Lundin Mining, it is
a deposit located in the southern part of the Bergslagen province
ructural model generation.
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of south-central Sweden. Long hole panel and sub-level bench
stopping are used to mine zinc-lead and copper ores in a poly-
metallic deposit. The deposit comprises a stratiform, massive Zn-
Pb deposit where the orebodies thickness ranges from 3 to 40 m.
In the central part of the deposit the zinc-lead mineralization is
stratigraphically underlain by a sub-stratiform copper stockwork.
Lújar mine belongs to Minera de Orgiva and it is a narrow vein flu-
orite mine located in the Granada province, southern Spain. The
mine is in the Alpujarride complex, composed mainly of carbonate
formations and its stratigraphic series is composed, synthetically,
of a basement of metamorphic rocks (quartzite, mica schist and
phyllites) and a thick carbonate formation above them. The geolog-
ical context in this site corresponds to mineralizations of sulphides
of zinc, lead and fluorite, embedded in dolomite and calcite rock.
The deposit is affected by two orogenic phases, resulting in cavi-
ties, faults and large open fractures that must be detected to adapt
the explosive charging. The mining method is room and pillars
adapted to the complex mineralization.
3.1.1. Zinkgruvan mine
Measurements in this operation correspond to a sublevel bench

stope drilled with an Epiroc Simba E7C hydraulic long-hole pro-
duction drill rig. Automatic drilling is conducted with 89 mm drill
bits and 1.7 m long rods. The version of the control system is 4.14.
The system provides PR (m/min), and a set of pressures, PP, FP, DP,
Fig. 2. 3D view of the drilling sketch from the production stope monitored in
Zinkgruvan mine. Note: The orebody limits are showed in light blue. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. 3D and unwrapped image of a section of hole 1 of ring 1 (R1H1). Note: Discon
interpretation of the references to colour in this figure legend, the reader is referred to
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RP, and WP (bar), at intervals of 2 cm. Fifteen boreholes from eight
different rings were probed with an optical televiewer QL40 OBI-
2G. The drilling pattern and the stope and access drift are shown
in Fig. 2, where the holes logged with the televiewer are plotted
in continuous colour lines and the rest in black dashed lines. The
design of the stope consists of twenty-two rings with 4–6 upwards
blastholes each, making up 93 boreholes, with inclinations with
respect to the vertical axis of 0�48�. The length of the holes is
about 15 m, with some boreholes having a shorter length, to fit
the orebody. The nominal burden and spacing is 2.5 and 1.5 m,
respectively. An emulsion explosive is used with variable density
when fractured zones are recognized.

Televiewer measurements were made from the collar of the
hole up to 1.54 m from the hole collar, which corresponds to the
length of the logging tool. The software WellCAD was used to iden-
tify three types of discontinuities that could affect the response of
the drilling rig, namely, closed joints (CJ), shear zone (SZ) and
change of lithology (COL), and three lithologies: zinc ore, probable
ore, and sedimentary biotite gneiss. The latter has a uniaxial com-
pressive strength (UCS) of 175 MPa (ranging from 100 to 275 MPa),
and the ore 225 MPa (single value). In general, no mechanical dif-
ferences occurred between ore and waste. The different disconti-
nuities are marked in Fig. 3, where an image of each type is
shown on the right part by way of example.

The joints mapped have small aperture, and a frequency that
varies between 2.3 and 4 m�1, with mean and standard deviation
of (3.1±0.1) m�1. The equation given by Priest and Hudson [54]
to calculate the Rock Quality Designation-RQD index from the frac-
ture frequency is applied. For this case, the resulting RQD is in the
range 93.8%�97.6%, which indicates an excellent quality of the
rock.
3.1.2. Lújar mine
A two-boom Atlas Copco 282 jumbo equipped with an in-house

automatic recording system was used to drill 33 pseudo-horizontal
boreholes in the level 70 of the mine. The jumbo is a rudimentary
unit with a semi-automated control system, in which the feed
pressure does not control the rotation pressure or the percussive
pressure, that ultimately are controlled by the operator. The holes
were drilled semi-automatically with a 4 m long initial rod and 3 m
long additional rods. The system stores in a computer installed on
the jumbo the following parameters: time, drilling length, hole ID,
relative hole position, and three pressures (PP, FP, and RP), with a
tinuities are mapped in colors (COL in green, SZ in magenta, and CJ in blue). (For
the web version of this article.)
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sampling interval about 2 cm. The PR is calculated from the length
and time recorded.

Most of the boreholes (25 holes) were drilled in small develop-
ment heading blasts of nominal section 4�4 m. They were located
in two development galleries identified as Zones A and B, see Fig. 4.
The production holes have a diameter of 51 mm and a length in the
range 3.5–4 m; they were logged with a digital endoscope and a
measuring tape inside the borehole to reference the camera posi-
tion. Pumped ANFO explosive is generally used though cartridges
must be employed where cavities or faults are detected, in order
to prevent explosive leakage and to improve blasting performance.

The rest of the boreholes (8 exploration drill holes) were drilled
in Zone B (see red lines in Fig. 4) with a diameter of 63 mm; three
of these holes have a length of about 16 m and the other five about
Fig. 4. Position of production (blue lines) and exploration (red lines) holes monitored in
blast 6, at Lújar mine. Note: Grey clouds are the blast faces monitored. (For interpretatio
version of this article.)

Fig. 5. Geological profile of the half cast of hole 30 (Blast No. 8) mapped after blasting in
from optical endoscope videos are shown in the top and bottom image stripes.

5

6 m. In these surveying holes, an endoscope manufactured by
Forthaus Tech and provided with an encoder was used.

Rock strength data (UCS) ranks from 44 to 83 MPa for the waste
and from 82 to 96 MPa for the ore. The structures, as fluorite occur-
rences and discontinuities, observed from the videos are shown in
Fig. 5 over a geological profile of a half cast of the corresponding
hole inspected after the blast. Small joints (red arrows in Fig. 5a)
are not considered as their influence in MWD signals is limited
in comparison with large discontinuities such as cavities or faults
(Fig. 5b and f, respectively). The four discontinuity classes consid-
ered are: closed joint (CJ; Fig. 5g), open joint (OJ; Fig. 5c), change of
lithology (COL; Fig. 5e), and cavity or fault (CAV; Fig. 5b and f).

Fracturing, cavities, and faults are abundant in some zones of
the mine. The mean fracture frequency ranges from 6 to
zone A (right) and B (left) and the detail of logged holes marked with blue circles for
n of the references to colour in this figure legend, the reader is referred to the web

Lújar mine. Note: A representative image of the different discontinuities identified
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20.8 m�1 with mean and standard deviation (13.4±5.9) m�1. The
resulting RQD in the range 36.1%–94.7% suggests zones with a fair
rock quality, due to large discontinuities and strong fracturing like
cavities and faults, and zones with excellent rock quality where
massive rock (MR) is predominant.
3.2. Drilling data

In the case of Zinkgruvan, the MWD data recorded by the Rig
Control System (RCS) for the 15 holes logged with the televiewer
correspond to 10068 records. In Lújar, 9,830 drilling records are
obtained in the 33 holes logged with the optical endoscope.

The probability density distributions of raw MWD parameters
for both operations are represented in Fig. 6. Most of PR records
from Lújar mine are concentrated at low values, and high values
up to 2 m/min, are associated to a cavity or a fault that does not
present resistance to the bit advance. FP in Lújar shows a bimodal
distribution, about 32 and 47 bars, which may indicate two differ-
ent rock mass strengths, this being a subject of further study on
lithology recognition. For Zinkgruvan, the damper and flushing sys-
tems are started before the bit advances through the rock mass
involving then DP and WP above zero. In addition, most of PP
and DP are grouped at high values, but there are also lower pres-
sures possibly related with the action of the control system. FP,
RP, and PR include zero in the distribution due to either a rod addi-
tion or the presence of discontinuities. The automation system on
the rig strives to keep the DP constant by the action of a two-step
feed cylinder with a small and large area. The small area of the feed
cylinder aims to reduce FP at the beginning of drilling with a new
rod in order to prevent an increase of hole deviation when a rod is
added, leading to the bi-modal distribution for FP in Fig. 6. In gen-
eral, levels of drill parameters are lower in Lújar than Zinkgruvan
Fig. 6. Normalized histograms of unprocessed MWD data from Lújar and Zinkgruvan dat
them.
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reflecting differences in the drill rigs, their control system and
the geomechanical characteristics of the rock mass.

To correlate drilling signals with borehole logs, the operational
and mechanical effects in MWD data that could bias the recogni-
tion of discontinuities or lithologies are removed following the fil-
tering and normalizing steps [27,28], see the central in box of
Fig. 1.

3.3. Definition of a binary pattern of the structural rock characteristics

To correlate discontinuities recognized in the borehole walls
with the response of the drill rig, a binary sequence (presence/ab-
sence) identified as Dobs is built [55]; the categories are assigned as
value 1 for discontinuities (DISC) and 0 for massive rock (MR), as
function of the borehole depth using the same resolution as the
MWD system. The binary sequence criterion lumps the different
categories of discontinuities in a single one, this way building a
category with sufficient members compared with the MR class;
even with this grouping, the discontinuity class is outnumbered
by the MR class. The depth, dip, azimuth, and aperture (if applica-
ble) of three types of discontinuities (i.e., CJ, SZ and COL) are only
available for televiewer logs in Zinkgruvan. The drill response to
inclined and closed discontinuities is not restricted to a single
point associated with the depth of the center of the discontinuity
(dcp) but to the whole intersection length (db) with the borehole,
to which a sequence of ones is assigned (Fig. 7):

db ¼ dcp � /h

2
� tana ð2Þ

where /h is the hole diameter and a is the angle of the normal of the
discontinuity with the borehole axis (Fig. 7). A comparison between
a section of a televiewer log with the corresponding binary
sequence Dobs, in which zeros or massive rock are plotted in white
a sets. Note: The darker area in histograms corresponds to the overlapping between



Fig. 7. Discontinuities by TV assessment for Hole 1, Ring 2 (R2H1). Note: Televiewer image up and binary sequence Dobs down, calculated with Eq. (2).
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and ones or discontinuities in blue, is shown in Fig. 7. The zoom on
the right outlines a shear zone (magenta trace) observed in the tele-
viewer log and the corresponding fracture zone in the binary
sequence.

The total number of ones (or samples treated as DISC) is 49% of
the total samples logged with the MWD system in Zinkgruvan. Iso-
lated and pseudo closed horizontal discontinuities have likely a
limited influence in the response of the drill rig and are discarded
for the analysis. To define a criterion to filter out these discontinu-
ities, a comparison of the Dobs sequence with the MWD signals
shows that discontinuities in Dobs that are separated (i.e., distance
between the end and the beginning of the influence area of two
adjacent discontinuities) at least by 20 cm and have a width (db)
below 20 cm have a limited influence in the rig response. An exam-
ple of this discontinuity type is the zoomed joint in the initial part
(left zone) of the borehole in Fig. 7, with an influence width of
12 cm.

Eq. (2) cannot be applied to data from Lújar mines because the
dip and azimuth of discontinuities cannot be measured from the
endoscope videos. The size of the discontinuities in the binary
sequence Dobs (or number of ones) is obtained by visual assessment
of the discontinuity width (or the affected hole length) in the
recorded videos, so that the effect of dip differences between dis-
continuities is not included in the resulting model. Minor disconti-
nuities with negligible influence in the drill rig cannot be detected
in the videos due to the lower resolution of the endoscope in com-
parison with the optical televiewer. This involves that less samples
are classified as joints, just a 10% of the total samples, than mainly
correspond to larger faults and cavities. As minor discontinuities
are not marked in the videos, no filtering is required to remove
them.

3.4. Classical approach: Structural factor

To formulate the best prediction model, a re-parametrization of
the DI (Eq. (1)) that defines the optimal combination of drill
parameters and their weight in the model may be done as follows:

DIi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
bj

variðMWDjÞ � varMWDj

stdðvarMWDj
Þ

 !2
vuut

with i ¼ 1; 2; . . . ; L

ð3Þ

where variðMWDjÞ is the moving variance at the sample point i cal-
culated through a sliding window of the jth MWD parameter (calcu-
lated with MATLAB’s instruction movvar) with a length of 14
samples (equivalent to a depth of 26 cm; note that the MWD reso-
lution is constant at both mines); varMWDj

the mean of the moving
7

variance for the jth MWD parameter regarding the total length of the
borehole; stdðvarMWDj

Þ the standard deviation of the moving vari-

ance for the jth MWD parameter regarding the total length of the
borehole; n the number of MWD parameters; bj the weight of the
jth MWD parameter, determined as those yielding a higher fractures
recognition;

Pn
j¼1bj ¼ 1. Eq. (1) is a particular case of Eq. (3) with

n=2 and b1=b2=0.5; and L the number of records for each borehole.
Eq. (3) is applied to combinations of two, three and four (i.e.,

n=2, 3 or 4) MWD parameters. These are PR and three pressures
(PP, DP, and RP) for Zinkgruvan data; WP and FP are discarded to
simplify the analysis: WP is sensitive to water inflow, which is
not observed for the discontinuities marked due to the absence
of large or wide-open discontinuities [33]; FP is biased by the effect
of the two-step cylinder that controls its level so as to prevent hole
deviation. In Lújar, all four recorded parameters (PR, PP, FP, RP) are
used.

After works by Schunnesson [20] and Ghosh [6], in which the
major peaks in the DI signals could be related with the presence
of discontinuities, a binary sequence (hereinafter DDI) is created
from the resulting DI. For this, values of the peaks over a threshold
are defined as ones (discontinuity) and the rest as zeros (massive
rock). This threshold T is taken as a percentile of the distribution
of the DI for all boreholes monitored in each site. Percentiles are
varied from 50 to 95 in steps of 5; the values providing a better
recognition rate are selected.

To find the DI (i.e., the optimum combination of MWD parame-
ters and their bj weights, and the threshold percentile T, which
leads to the best recognition of the discontinuities observed in
the borehole walls), similarity measurements between Dobs and
DDI sequences are used [56]. This type of analysis has been used
to assess binary data in different areas as in pattern recognition,
information retrieval, statistical analysis, and data mining, and in
specific for rock mechanics or related areas [57].

To account for the uncertainty in the hole logs (mainly in the
exact position associated to a discontinuity) and for the fact that
the response of the drill rig is not instantaneous, and it is also
affected by conditions at previous depths, the cross-correlation
between the binary sequences Dobs and DDI is calculated consider-
ing offset lags of up to 10 positions. This allows a tolerance
between both sequences, which enables a maximum gap in the
position of one series over the other of 20 cm, according to the pre-
cision of the MWD system in both sites. For the relative position
between both series where the maximum correlation is obtained,
the number of samples matched between the binary sequences
DDI and Dobs for massive rock (MRSM) and for discontinuity
(DISCSM) are calculated. From them, the ‘simple matching’ similar-
ity criteria by Sokal and Michener [58] is applied:
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ST ¼ MRSM þ DISCSM

TOTS
ð4Þ

where TOTS is the total number of samples in either DDI or Dobs.
The similarity index in Eq. (4) handles the double-zero state

(e.g., absence of a discontinuity or massive rock in both objects Dobs

and DDI) in the same way than the double-one scenario (e.g., pres-
ence of a discontinuity in both objects Dobs and DDI), which avoids
any bias in the performance of the DI for discontinuity recognition.

3.5. Machine learning approach

The definition of the binary sequence from in-hole images con-
verts the recognition of the structural condition in each borehole
into a classification problem, for which the most suitable classifica-
tion algorithm must be selected. A scheme is defined for data set
validation and hyper-parameters optimization, resulting in a
hybrid ensemble model.

3.5.1. Input data and resampling process
The input parameters considered for ML are the length of the

hole, all drilling parameters (after processing), and their variances.
This makes up thirteen features for Zinkgruvan and nine features
for Lújar. The model outputs or target values are the binary
sequence determined from hole logs. As discussed in Section 2.2,
it is important that the categories targeted (i.e., presence or
absence of discontinuities) have the same probability of occurrence
to train and test the model with an equitable quantity of data for
each class [59]. This is not a problem for Zinkgruvan, as the number
of samples classified as massive rock and as discontinuity is even
(49% and 51%, respectively; see Section 3.3). For this site, samples
from 14 holes are randomly split into training and testing sets with
7476 and 1869 samples (ratio 8:2), respectively. Measurements
from one hole (R16 H3), selected randomly, are left out to validate
the model.

In the case of Lújar, about 90% of the samples are classified as
massive rock, representing an imbalanced class distribution. Under
sampling of the original dataset could be an option to balance both
classes. For this, only 10% of the samples (same number as DISC
class) of MR could be used, which could bias the original data set
that includes several areas of massive rock along the holes, limiting
the generalization performance of the model for new data with
these characteristics. As an alternative, a systematic re-sampling
technique [60,61] is applied: The samples where a significant vari-
ation in the response of drill parameters may take place, are dupli-
cated and added to the original set as new data set. This enables
the model to identify the boundary between discontinuities and
massive rock.

3.5.2. Classifier: Random Forest (RF)
RF is a classifier composed by an aggregation of tree-structured

classifiers or classification and regression trees (CARTs), that are
trained following a bagging process [62]. In the bagging method,
the dataset is randomly sampled-with-replacement (bootstrap-
ping) to form a group of subsets (bootstrap sets) of the same size,
which are trained on different features, leading to the same num-
ber of different strong decision trees or CART [63]. The CART is
based on nodes which represent a classification criterion, following
a splitting process that is optimized to obtain the best goodness of
fit, and ultimately deliver a prediction through the individual con-
tribution of all the nodes [19]. During the process, some of the
samples in the set are not considered for the training, called out-
of-bag (OOB) samples, that are used to further validate the final
prediction obtained as combined output, this being the class
selected by the higher number of CARTs. A general structure of this
method is illustrated in the ensemble classifier section of Fig. 8.
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The performance of the RF algorithm depends on the hyper-
parameters that control the characteristics of the trees and the
bagging process. These are the number of learners (i.e., number
of decision trees in the model), the maximum number of splits,
(i.e., the depth of the decision tree or number of divisions, that con-
trols the complexity of the ensemble), and the minimum observa-
tions per leaf (number of nodes at the end of the tree). Using the
default values specified in suitable software packages works rela-
tively well, but results can be improved by tuning them [64]. This
optimization can be set by the user or automatically driven by tun-
ing strategies, namely: Bayesian optimization (BO) [65], grid
search [66] or random search [67].
3.5.3. Data structure and performance metrics
According to the characteristics of the data and the classifica-

tion target, RF is the ensemble method selected (Section 2.2); other
ensemble methods like the subspace k-nearest-neighbour (KNN)
provide slightly worse results and are omitted here. After selecting
the model to train with the input data, a validation scheme is cho-
sen to estimate the predicting ability of the model trained. Consid-
ering the size of the dataset and the number of sub-datasets used
in previous studies [68,69], a random k-fold cross-validation
scheme with ten folds is applied. The proposed flowchart for the
optimum ML classification model is described in Fig. 8.

The BO algorithm is used to tune the hyper-parameters (i.e.,
number of learners, maximum number of splits, and minimum
observations per leaf) that minimize the cross-validation loss or
error. Then, the general performance of the model is evaluated
through the classification accuracy, calculated from the weighted
average classification loss for the k-fold cross validation, after tun-
ing the hyper-parameters with the optimization function. It is
defined as:

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ � 100 ð5Þ
where TP is True Positives (i.e., number of samples of disconti-

nuities correctly predicted); TN the True Negatives (i.e., number of
samples of massive rock correctly predicted); FP the False Positives
(i.e., number of samples in DDI classified wrongly as discontinu-
ities); and FN the False Negatives (i.e., number of samples in DDI

classified wrongly as massive rock). Note that Eq. (4) is the same
to Eq. (5), but the last one does not account for the uncertainty
in the position as was done by the similarity index in the binary
sequences.

Other metrics used to evaluate the model performance for each
class are presented in a confusion matrix:

(1) The True Positive (TPR or recall number) and False Negative
Rates (FNR=1�TPR): They describe the proportion of correctly and
incorrectly classified observations, respectively, per true class.

(2) The Positive Predicted Values (PPV or precision) and False
Discovery Rate (FDR=1�PPV): They represent the proportion of
correctly and incorrectly classified observations, respectively, per
predicted class.

(3) The F1 score: It is a measure of test accuracy very useful
when there is an imbalanced data problem to analyse the perfor-
mance of the model for each category. It is calculated from the
recall (TPR) and the precision (PPV):

F1 score ¼ 2 � ðTPR � PPVÞ=ðTPR þ PPVÞ ð6Þ
The last metric considered is the Area Under the Curve (AUC)

that indicates the model performance to distinguish between pos-
itive (discontinuities) and negative (massive rock) classes; the
higher AUC the better is the classification ability of the model.
AUC is defined from the plot of the TPR versus the FPR showing
the performance of the classification model at different classifica-
tion thresholds.



Fig. 8. Flowchart of the classification model used.
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4. Results

4.1. Discontinuity index calibration

Table 1 shows the characteristics (i.e., drilling parameters,
weights, and threshold) of the best similarity indices between
the binary sequences Dobs and DDI obtained through Eq. (3) for each
mine. The similarity indices are sorted in descending order and
correspond to the mean of the match accuracy from all boreholes
monitored in Zinkgruvan (15) and Lújar (33). This ranges from
60.5% to 69.3% in Zinkgruvan and from 90.0% to 91.9% in Lújar.

The characteristics of the DI are different in each site. For
Zinkgruvan, the best recognition, 69% on average, is obtained with
the combination of the variabilities of PR and RP weighted by 60%
and 40% respectively, and a threshold of 65%, equivalent to a DI of
0.5. This result is in line with the fracturing parameter defined by
Ghosh et al. [6] and Navarro et al. [7,12], but with a slightly higher
contribution of PR. Slightly smaller similarity indices are obtained
when PP is added to the previous parameters (PR and RP), and
when two parameters DP and RP are combined; despite that the
two-step feed cylinder tries to keep the DP constant, this parame-
ter is included in seven of the combinations shown in Table 1. In
general, the best results are obtained when RP is considered, while
the lower accuracies are obtained when it is removed.
9

In Lújar, the DI recognizes in the best case near 92% of the dis-
continuities. This corresponds to the combination of the variability
of FP and PR with weights of 60% and 40%, respectively. The larger
weight in FP with respect to the other parameter may be explained
by the effect of the cavities and faults in the advance of the drill bit.
Similar indices, above 91%, are obtained when variability in RP is
combined with variability in FP and/or PR, individually or both
together. The inclusion of the variability in PP also leads to good
similarity indices above 90% probably related with the existence
of large discontinuities causing oscillations in all the parameters
when crossed by the drilling. Despite of the limitations of the con-
trol system of the drill rig, this does not hide the response of the
drill rig to discontinuities.

To graphically show the recognition capacity of the DIs with the
highest mean similarity index, the binary sequences Dobs and DDI

for the holes with the worst and best results are plotted in Figs. 9
and 10 for Zinkgruvan and Lújar, respectively; the televiewer logs
are also shown for visual comparison in Zinkgruvan. Here, the DI
provides a similarity index between 60% (hole R3H1, worst case)
to 79% (hole R1H3, best case). The visual correlation of discontinu-
ities observed in the borehole walls and those identified by the DI
shows that almost all the zones with grouped discontinuities are
identified in borehole R1H3, and that massive rock zones at the
beginning and at the end of the hole are correctly recognized; mis-



Table 1
Summary results for the definition of the discontinuity index.

Drilling parameters
(MWDj)

Weights
(bj)

Threshold
T (DIT value)

Similarity index
(ST, %)

Zinkgruvan
PR, RP 60–40 65 (0.5) 69.3
PR, RP, PP 70–20–10 80 (15.9) 67.7
RP, DP 90–10 70 (0.6) 67.3
RP, PP 90–10 80 (1.0) 66.9
PR, DP, RP 50–30–20 75 (5.3) 66.8
PP, PR, DP, RP 50–30–10–10 75 (4.7) 65.7
PR, DP 90–10 70 (0.6) 65.6
RP, PP, DP 80–10–10 90 (11.8) 64.5
PR, PP 90–10 85 (0.9) 64.0
DP, PP 90–10 90 (1.4) 61.4
PR, PP, DP 80–10–10 95 (1,276.0) 60.5
Lújar
FP, PR 60–40 95 (2.5) 91.9
PR, FP, RP 40–40–20 95 (19.3) 91.5
RP, PR 60–40 95 (2.6) 91.5
FP, RP 80–20 95 (2.3) 91.3
PP, PR 70–30 95 (2.4) 91.3
FP, PP 80–20 95 (2.2) 91.1
PR, RP, PP 60–30–10 95 (16.2) 91.0
RP, PP 80–20 95 (2.1) 90.8
PP, FP, RP, PR 50–30–10–10 95 (147.9) 90.0
PP, RP, FP 70–20–10 95 (43,170.0) 90.0
FP, PP, PR 80–10–10 95 (61.2) 90.0
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matching is mainly related with differences between the extension
of the discontinuities calculated from in-hole logs (probably the
effect of the dip is smaller than Eq. (2) shows) and the response
in drill parameters (records with DI values over the threshold).
For borehole R3H1, several discontinuities and massive rock zones
are poorly discriminated; however, in general the DI identifies
numerous discontinuities for this hole that are in line with the
televiewer assessment. Considering the excellent quality of the
rock in this mine, changes in the mechanical response of the rock
Fig. 9. Televiewer log and binary sequences Dobs and DDI for holes R1H3 (ST=79%) and R3
calculate DI.
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to the drilling are more apparent when discontinuities are
grouped, for which the DI model provides a better recognition.
Conversely, recognition of several isolated discontinuities is diffi-
cult because each one of them may not individually trigger a
noticeable response in the drill rig. This is in line with the approach
followed by other authors in which zones from massive to highly
fractured zones are the goal.

For Lújar, the best DI provides a recognition of 80% (hole B7-
H19) to 99% (hole B5-H11). For hole B7-H19, the DI recognizes
the CAV at 1.6 m and one OJ at 2.2 m, while the other four OJ at
2.1, 2.7, 3.1, and 3.5 m are incorrectly assigned as massive rock.
Probably the OJ discontinuities misclassified by the DI did not
cause a significant mechanical response of the drill. For hole B5-
H11, the unique discontinuity observed from the endoscope videos
(a fault at the end of the hole) has been correctly identified, and
zones of massive rock are correctly estimated. A false positive
(i.e., narrow discontinuity defined by the DI value over the thresh-
old, which does not appear in the video) is predicted at 3.3 m.

To further analyse the performance of the best DIs (see rows
marked in bold in Table 1) in each site, the fractions of recognized
and non-recognized discontinuities (blue and orange bars, respec-
tively) of each type is shown in Fig. 11. The analysis is performed
comparing each record in the same position of the DDI and Dobs

sequences as defined by the optimum offset lag (Section 3.4). The
labels over each bar are the similarity index for each class (i.e.,
structures from DI that match those from optical inspection). In
both operations, massive rock (MR) is the class with higher recog-
nition accuracy. This indicates a good recognition of zones with
limited variability or noise in the drilling signals and the absence
of discontinuities.

In general, discontinuities are better identified in Zinkgruvan
than in Lújar. For Zinkgruvan, SZ and CJ are similarly detected
(the similarity index is near 45%), while the identification of COL
is poor. Such result may be explained by the fact that shear zones
and joints cause a larger variability in PR and RP than when there is
a change in the lithology as this does not involve a significant dif-
ference in the strength of the corresponding rocks. The poor iden-
H1 (ST=60%) of Zinkgruvan. Note: Parameters marked in bold in Table 1 are used to



Fig. 10. Televiewer log and binary sequences Dobs and DDI for holes B5-H11 (ST=99%) and B7-H19 (ST=80%) from Lújar. Note: Parameters marked in bold in Table 1 are used to
calculate DI.

Fig. 11. Frequency of the different structural characteristics. Note: The labels above each bar are the similarity indices for the recognition of each type of structure from the
DI, left, based on the variability of PR and RP in Zinkgruvan; right, based on the variability of FP and PR in Lújar. See the rows in bold in Table 1 for more details about the DI.
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tification of discontinuities and the similar number of samples of
DISC and MR in the sequence Dobs, leads to a moderate overall
accuracy, up to 70%.

For Lújar, CAV are the discontinuities better recognized. Despite
that the similarity index for this class is low, most of the cavities
(75%) are detected but their width is narrower and/or they are
slightly shifted compared with Dobs, which reduce the recognition
percentage when the discontinuities are compared in each record.
The other discontinuity types, CJ, OJ and COL do not lead to signif-
icant variations in the drilling signals and are not well recognized,
resulting in low similarity indices. The limited influence of these
discontinuities in the drill rig response will likely mean a minor
effect blasting-wise, and they could probably be treated as massive
rock in terms of blast design and explosive charging patterns. The
smaller number of samples of discontinuities in comparison with
11
samples of massive rock in Dobs, involves a higher overall similarity
in comparison with Zinkgruvan.

4.2. ML classification

Table 2 summarizes the main performance metrics of the
resampling process and hybrid ensemble algorithm BO-RF devel-
oped for both mines. The validation accuracy is similar for the
training dataset and the testing one in both sites, which shows
the consistency of the model when applied to unseen data. The
prediction ability of the model in Lújar is high, near 96%, while
for Zinkgruvan is near 90%. These results correspond to the best
combination of hyper-parameters, defined by the lower cross-
validation loss obtained from the BO technique applied. The value
of the AUC is high in both sites, indicating that the models distin-



Table 2
Summary of RF model result for the classification of discontinuities.

Site Validation accuracy AUC Hyper-parameters
Training (%) Testing (%) Number of learners Max number of splits Min observations per leaf

Zinkgruvan 88.7 88.6 0.95 235 3471 1
Lújar 96.3 96.9 0.97 27 6751 1

Note: The hyper-parameters correspond to the optimal combination from thirty iterations for BO technique.

Fig. 12. Confusion matrices for testing results using BO-RF classifier for MR and DISC categories.
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guish properly between massive rock and discontinuities. The
resulting classification models are composed by a large number
of complex decision trees (see the large number of learners and
splits in Table 2) indicating complex relations between the drilling
parameters and their variations.

The confusion matrices obtained for the testing set is presented
in Fig. 12 for both mines. The high F1 score for both mines, above
85%, indicates that the chosen ML model handles both classes
(DISC and MR) properly. Specially in Lújar, the precision values
Fig. 13. Predictor’s importance graph for RF
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(PPV and FDR) are excellent for both classes indicating a trustable
classification. The massive rock class is nearly completely recog-
nized with a high recall (TPR) and F1 scores (near 100%), while
the discontinuity class presents a slightly lower recall value (near
84%), probably affected by structures that trigger a similar
response in drill parameters than massive rock samples. In
Zinkgruvan, the model performance is slightly worse than in Lújar;
FDR value is higher, about 11% for both classes, but MR is still well
recognized. In both mines, the classification ability of discontinu-
model in Zinkgruvan and Lújar mines.



Fig. 14. Confusion matrix for MR and DISC categories from the DI built from variability of PR and RP in Zinkgruvan (top) and from variability of FP and PR in Lújar (bottom).
Note: The same drillholes used to train and test the ML model are considered.
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ities has improved significantly with respect to the classical
approach.

The relative contribution of each parameter (predictor) in the
classification model (i.e., how relevant is an input parameter to
predict rock mass conditions) is represented in Fig. 13. It shows
the weighted average importance from each tree learner of the
ensemble; higher values indicate a larger influence of an input
parameter in the predictions. In Zinkgruvan (blue bars), variations
in DP and PR present the higher importance for the model. The last
parameter was included in the DI with the highest similarity index
(Table 1), while oscillations in DP were probably not considered in
this DI due to the effect of the two-step feed cylinder. The complex
relations defined by the BO-RF algorithm overcome this spurious
effect, making DP variation the most important feature for the class
prediction. Among direct drill parameters in both mines, the mea-
sured depth presents the higher importance, which reflects that
the ML model considers the process as a regionalized phenomenon
within a continuous medium; this means that is more probable to
find the same class for close (i.e., same depth) records. In addition,
WP presents the second higher importance suggesting probably
that some of the structures marked in televiewer logs have an
aperture that is not identified in the images, but that affects the
pressure of the water flush. For Lújar (orange bars), FP variation
has the higher importance, in agreement with the results from
the classical DI approach. Also, variations in the other three param-
eters (RP, PR, and PP) present the next higher importance, support-
ing the high similarity indices obtained when these features are
considered in the DI. PR is the direct drilling parameter with higher
relevance, in line with the high rates observed when a cavity or a
fault are crossed by a drillhole.
5. Comparative analysis and discussion

A calibration procedure of the DI has been followed aiming to
maximize the similarity index between the binary sequences from
observation of discontinuities with optical systems, and from the
calculations with drilling data. For both mines data, the variation
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of the parameters related with the response in the rock, as PR
and RP, explain well the presence of discontinuities despite the dif-
ferences in the rock conditions and drilling rigs characteristics. RP
probably accounts for the presence of small discontinuities which
are the prevalent ones observed in Zinkgruvan. In Lújar, variations
in the FP are also included in the DI with best performance. This
parameter is also pointed as the one with largest importance in
the predictions from ML model (Fig. 13). This result may be
explained by the presence of large cavities and faults, and the
automatization level of the RCS, which does not control properly
the RP or the PR through the thrust (FP). That is why this pressure,
commonly a rig control parameter, oscillates with the presence of
large discontinuities.

DP variation in Zinkgruvan, not considered in the DI due to the
spurious fluctuations caused by the two-step feed cylinder, is the
most important parameter in the BO-RF ensemble model. The
trained BO-RF algorithm seems to be able to filter this effect and
include this parameter in the prediction of discontinuities. This
result would suggest developing a filtering routine to include this
parameter in the classical model.

The better performance of the ML approach may be due at least
partially to the use of not only variances of drill parameters but
also to the values of the parameters themselves. The presence of
a discontinuity may result in a progressive increase or decrease
of the values, making it relevant to include also the drilling param-
eters. However, both approaches point out the effect of the discon-
tinuities on the variability of the recorded signals. To compare the
predictions obtained from ML classification model with the classi-
cal approach, the confusion matrix is calculated for the prediction
classes obtained with the best DI in both mines (see Fig. 14 and
parameters marked in bold in Table 1).

In line with Fig. 12, the classical approach recognizes signifi-
cantly better massive rock than discontinuities in both sites, result-
ing in a very good precision (PPV) and prediction (TPR) in Lújar
mine for massive rock, where the corresponding F1 score is near
95%. The performance in Zinkgruvan is worse, as with the DI, and
a lower F1 score for massive rock (77%) is obtained. The perfor-
mance of the DI in Lújar to predict discontinuities is, on the con-
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trary, poor (F1 value close to 35%), while in Zinkgruvan it is higher
and more balanced between the two classes. A comparison of
Figs. 12 and 14 shows that the classification ability of the DI is
worse than ML. This different performance is most likely related
to the use of more inputs and complex relations in ML than in
the DI (that essentially comprises a linear combination of varia-
tions of drilling parameters).

To further compare the performance of the BO-RF classification
model versus the classical approach, the similarity indices between
Dobs and the binary sequence of the holes left out for validation
(R16H3 in Zinkgruvan and J-230 in Lújar) have been calculated
for both BO-RF and DI models. The discontinuity maps from optical
logging and those calculated from BO-RF and DI for Zinkgruvan’s
hole R16H3 are plotted in Fig. 15. The classification accuracy is
similar for both approaches; the similarity index is 79.6% (F1 score
is 85.4% for MR and 65.1% for DISC) for the ML model compared
with 71.3% (F1 score is 80.9% for MR and 34.4% for DISC) for the
DI calculated with the parameters in bold in Table 1. However,
ML recognizes better the discontinuities (the F1 score is almost
twice) than the DI. The ML model identifies more discontinuities
Fig. 16. Endoscope images and binary vectors for optical inspect

Fig. 15. Televiewer log and binary vectors for TV, DI and M
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than the classical model but is not precise in their position and
extension; the ML results are, however, better in overall terms.

The resulting binary sequences for hole J-230 in Lújar are plot-
ted in Fig. 16; images from the most significant discontinuities
observed by optical inspection are shown in the top plot. The
results for both techniques are very similar; similarity index for
ML is 92.2% (F1 score is 95.8% for MR and 21.1% for DISC), while
it is 92.6% (F1 score is 95.9% for MR and 39.2% for DISC) for the clas-
sical model. The binary sequences obtained with both models rec-
ognize the two large cavities at 7.1 and 12.7 m. The void located at
about 2 m could correspond to a weathering of the walls of the
hole by the effect of the drilling, indicating a soft rock without a
strong fluctuation in drilling parameters. Conversely, the open
joint at 10.7 m is clearly a structural condition that is not detected
by any of the models. In the case of the DI analysis, this could be
attributed to small fluctuations on the signal when this discontinu-
ity is crossed compared with the two cavities identified, while for
the ML analysis, it could be due to the small number of examples of
the open joint category, that prevents the model from learning this
class correctly.
ion, DI and ML analysis for testing data in hole J-230, Lújar.

L analysis for testing data in hole R16 H3, Zinkgruvan.
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Both DI and ML approaches provide better results for Lújar mine
than for Zinkgruvan despite that the control unit of the drill rig in
Lújar is very limited. Such differences may reflect a smaller effect
of inclined discontinuities in the MWD response than what is con-
sidered by Eq. (2), that involves a wide zone of discontinuity influ-
ence in the Dobs sequence, that is used to calibrate both DI and
machine learning. Overall, the classical analysis is a simple calcula-
tion with which it is possible to obtain a reasonable recognition
accuracy of the discontinuities and massive rock classes in both
operations, while the ML analysis shows better prediction results,
at the cost of using more parameters and complex relationships.

Regarding the performance of the model, the quality of the
MWD geological accompanying data is key for a precise identifica-
tion of each discontinuity class and its position along the hole. A
significant limitation of this task is the difficulty to differentiate
structural discontinuities from voids and fractured zones worn
by the action of the drill itself. A wrong classification of some cat-
egory or discontinuity feature, like aperture, affects the selection of
parameters and their weights in the classical approach, and the
model performance in the ML approach is reduced if trained with
quite different values for the same response. This occurs in ML
model in Zinkgruvan in which WP has a relevant importance in
the classification ability though no visual open discontinuities are
apparent from televiewer logs.

The results obtained for both models are probably as good as
can be since accuracy in the testing process is limited by: (1) The
difficulty in the recognition of discontinuities for which the drill
may not be sensitive, as the structural condition of each disconti-
nuity is often barely assessed by the visual evaluation of the optical
logs, so that discontinuities that may not cause a mechanical
response of the drill (i.e., a response similar to massive rock class,
a small variation or noise in the signal) could be marked; (2) Errors
in the exact position and extension of the discontinuities: Despite
the high-resolution image of the televiewer, an offsetting error in
the collar could shift all the marked discontinuities from their real
position. For the endoscope, the encoder resolution is 10 cm, that is
five times the MWD resolution, introducing bias in the exact exten-
sion and position of the discontinuities marked; this includes the
unknown effect in the response of the drill rig between inclined
and pseudo-horizontal discontinuities; (3) Different discontinuity
classes are grouped in only one category in the binary approach,
so different magnitudes of response shown in the signals may con-
fuse the recognition in the model training.

These limitations could be eased with: (1) A broader dataset to
define more rock conditions, certainly enabling an increase of the
similarity index and the model accuracy; (2) Marking only major
structural changes i.e., cavities, faults or highly fractured zones,
for which drill parameters may be sensitive; those discontinuity
types would likely be the ones with e.g., a major role in rock break-
age by blasting; (3) Studying the performance of the techniques
proposed in a multiclassification scenario, for which it is necessary
to have a reasonable quantity of samples from each category
assessed.

The main advantage of the methodology proposed is the adap-
tive structuring of the classification model, regarding the drilling
parameters available on site, and the training process based on
the mine’s own rock mass characteristics.

The testing of the methodology presented in two operational
environments with very different conditions of rock mass quality
and drilling technology used, added to the fact that imbalanced
sets are a prevalent scenario for rock mass classification, support
the use of this approach as engineering practice for any under-
ground mining operation. For the application of the hybrid ensem-
ble ML model and the resampling technique, a sufficient database
of geological and drilling data is required, that must be customized
to the appropriate data formats.
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The application of the solution proposed in a continuous exca-
vation cycle requires an initial commissioning period to consoli-
date a comprehensive database, comprising drill rig and
geotechnical features of the operation. When a continuous imple-
mentation of this methodology is planned, it is relevant to consider
enlarging the geological data as the rock mass characteristics
changes or a different drilling unit is used in the operation. With
this calibration and validation steps, the rock structural model gen-
erated is very likely to present a good predictive accuracy and high
confidence in their results, as shown in this research. The validated
virtual core obtained from the MWD parameters response, in
which the structures that occur naturally in the rock are recog-
nized, can be used e.g., to estimate rock quality indices used in
blast design and/or guiding blast charging adaptations.
6. Conclusions

Drilling data from different drill rigs (with different automation
levels and control features), and borehole logs made with different
rock structural mapping techniques (logging with optical tele-
viewer and with digital endoscopes) were gathered in two under-
ground mines with different rock mass characteristics. The
following findings and conclusions can be drawn:

(1) A comprehensive methodology for discontinuity recognition
from MWD data is developed and validated for implementation in
an underground mining operational environment. The recognition
of discontinuities has been quantified by introducing classification
performance metrics that compares their existence at a certain
location in a borehole as from the drilling parameters and from
in-borehole televiewer or video footage inspection.

(2) Both a classical linear combination and ML techniques have
been applied to MWD data to build predictive models of disconti-
nuities, obtaining high classification accuracies. The selection of
drill parameters or features to be included in the analysis is crucial
for a successful result, the optimal combination being site specific,
dependent on the rock mass properties and the control system of
the drilling equipment.

(3) A hybrid ensemble Bayesian optimization technique to opti-
mize a Random Forest model, BO-RF, is validated as an ideal model
to achieve the classification of rock discontinuities despite the
existing imbalance of categories in the datasets used. The resam-
pling technique, the hyper-parameters optimization algorithm,
and the 10-fold cross-validation, are proven as a sound combina-
tion of techniques to apply in rock type classification from drilling
parameters. Given that imbalanced distributions are a prevalent
scenario for the rock structural classification problem, the applica-
tion of the ML technique proposed is generalizable for any under-
ground mining operation, provided that a sufficient database of
geological and drilling data exists.

(4) The predictive capacity of the models is quantified by intro-
ducing classification performance metrics, adapted for both
approaches. This enables a reliable assessment of the results,
rather than the classical qualitative assessments based on visual
comparison between actual and predicted rock mass conditions.
The prediction accuracy is rated for each class included in the
model, which allows it to detect the classes poorly predicted so
as to increase the number of samples in the database.

(5) Using the ML approach, the general classification accuracy
from the resulting site-specific models is in excess of 90% for both
mines, using nine direct or derived drill parameters for Lújar and
thirteen for Zinkgruvan. Consistent results are obtained when
models are validated with external data, with overall recognition
accuracies about 80% in Zinkgruvan and 90% in Lújar.

(6) For the classical approach, in Zinkgruvan the DI that pro-
vides better recognition results is a combination of PR and RP vari-
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ability, while in Lújar, the best DI is obtained by a combination of
FP and PR variabilities. Applying these combinations, the resulting
similarity index is over 90% in Lújar, where large discontinuities,
such as voids and faults, are predominant. In Zinkgruvan, where
only small discontinuities are observed, the prediction is worse,
in the range 70%–80%.

(7) The application of ML yields a higher classification accuracy
than the DI through the use of more drilling parameters and more
complex and unknown relations between them. However, the sim-
plicity of the classical model makes it a practical alternative to pre-
dict the structural condition along the borehole. In general, the ML
model defines drilling variations as most useful predictors for
structural conditions, much like the classical model, fully based
on parameters variation.

The results from this study encourage the application of a sim-
ilar methodology to generate a site-dependent rock strength condi-
tion model and to quantify its performance. It should be noted that
a good discrimination of the discontinuity types that cause a
mechanical response in the drill bit as it passes through them is
important in order to achieve good recognition algorithms. The
bias in the in-hole logging process inevitably affects the validation
of the model performance, and consequently a more precise log-
ging method, non-operation-disruptive, is worthy of being studied.
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