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A B S T R A C T   

This paper describes a practical application of support vector machine (SVM) for ore grading in an underground 
fluorite mine. It covers all aspects from the inception of the experiments, data collection, input preparation, 
model description and results. Forty-eight drilling chips samples are collected while drilling six pseudo- 
horizontal boreholes at depth intervals of half a meter and their chemical composition determined through X- 
Ray fluorescence; the response of the drill rig is used to accurately define the depth of each sample along the 
blasthole. Images of the blasthole walls are collected with an optical televiewer with white and ultraviolet (UV) 
illumination. The color information of the images is characterized by the cumulative distribution of pixel color 
intensities of red, green and blue, used as inputs. A well-known metaheuristic algorithm is used to calibrate the 
SVM hyperparameters. Repeated k-fold cross validation is applied to increase the prediction performance due to 
the small-size of the dataset. An outlier inspection is made resulting in improved performance. The combination 
of pixel intensities from white and UV light scans leads to the best prediction of fluorite content (average R2 

=

0.83 and RMSE = 3.32 %), while intensities from only white light procures the best classification results (average 
classification accuracies from 0.77 to 1). These metrics support the utility of the proposed methodology for 
reducing the amount of lab analysis in ore grade control.   

1. Introduction 

The accuracy of reserves evaluation and the distribution of ore 
grades are key aspects in mining economics, planning and design. The 
prediction and evaluation of mineral grades plays a crucial role in the 
mining industry in its struggle to stay competitive under volatile prices, 
variable chemical and mineralogical composition, and declining ore 
grades. Swift grade determination of the ore that is being mined is 
instrumental to mining efficiency, hence methods for providing infor
mation on ore grade in an inexpensive and efficient way are of great 
interest for the mining industry. The harsh environment of underground 
works often limits the applicability of sophisticated and expensive 
analysis equipment, and the on-site implementation of complex 
analytical methods. 

Two types of direct methods for determining the ore grade are core 
drilling and drill cuttings analysis. Core drilling is costly resulting in a 
limited dataset from which an ore grade model is inferred (Starr and 

Ingleton, 1992). On the contrary, the drill cuttings analysis from ordi
nary drilling for blasting or roof support allows for a dense sampling net; 
however, this method often has a limited accuracy as only average 
values per borehole are determined (Neff, 1987). When the number of 
sampled holes is large, chemical analysis of drill cuttings can also be 
very demanding in terms of labor and assaying costs. 

Minerals with different grades and components may present different 
colors and other optical properties. Some researchers have analyzed the 
optical properties of minerals at microscopic scale (Donskoi et al., 2013; 
Donskoi et al., 2015; Lane et al., 2008). Tanaka et al. (2019) reported a 
method for the recognition of acidic alteration zones in a deposit by 
distinguishing the intrinsic absorption peaks in the short-wavelength 
infrared region from various alteration minerals. Donskoi et al. (2007) 
combined a series of image analysis and mineral measurement tech
niques to distinguish the minerals with similar composition and texture. 
Berrezueta et al. (2016) proposed a new method by combining multi
spectral and color image analysis from microscopic observations to 
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identify and quantify parameters related with geometallurgical perfor
mance such as ore grade, grain size and mineral liberation. Okada et al. 
(2020) proposed a quick and non-destructive technique to identify 
mineral types before mineral processing by utilizing RGB (red, blue and 
green) pixels information, hyperspectral imaging and deep learning 
techniques. Liu et al. (2019) show that deep learning, transfer learning, 
clustering algorithms and supervised learning techniques provide a 
more effective mineral recognition than traditional ones. 

Despite rock recognition from spectral information being promising 
for ore grade assessment, the procurement of these data needs advanced 
equipment and also benign, friendly working environment. Inexpensive 
spectrometers are sometimes prone to errors in wavelength shift 
requiring frequent calibration. In some cases, optimum acquisition of 
images or segmentation techniques must be applied to guarantee an 
accurate recognition or classification. In view of this, color parameters 
of ore images seem to be a good approach to characterize the mineral 
characteristics due to its accessibility, low cost and convenience (Mar
schallinger, 1997; Thompson et al., 2001). For instance, Ramil et al. 
(2018) proposed an automatic identification system of in situ granite 
minerals based on artificial neural networks and RGB values of pixels of 
images of small-scale slabs. Li et al. (2017) developed a novel classifi
cation method of sandstone microscopic images named Festra based on 
gray levels. Baykan and Yılmaz (2010) identify minerals with the aid of 
artificial neural networks using color information such as RGB, hue, 
saturation and lightness (HSL) of thin sections from a rotating polarizing 
microscope equipped with a digital camera. Desta and Buxton (2017) 
acquired in-situ georeferenced RGB images from the mine faces to 
interpret the distribution of minerals. Unsupervised learning techniques 
allowed to distinguish five mineral types with an accuracy of nearly 80 
%. 

In summary, it is apparent that the color properties of mineral images 
have a great potential to provide reliable information for evaluating 
mineral grades or for mineral recognition. However, in order to apply 
this approach for ore grade control in mine planning and production 
quality assessment, it must be shown that the complex relationship be
tween color parameters and mineral grades generally found from 
microscopic images at lab scale still applies to macro photography of 
rock outcrops taken in a production environment. 

Recently, machine learning (ML) techniques have been successfully 
applied to address mineral grade prediction (Dumakor-Dupey and Arya, 
2021; Jafrasteh and Fathianpour, 2017; Jooshaki et al., 2021; Kaplan 
and Topal, 2020; Mery and Marcotte, 2022; Sun et al., 2019). As an 
example, Patel et al. (2019) apply support vector regression (SVR) of 
color intensities of images taken over a lab scale conveyor belt to 
monitor the quality of iron ore; Zhang et al. (2018) use back propagation 
artificial neural network to offline assess phosphate grade of flotation 
concentrate samples. RGB, or other color features, seem to be good al
ternatives to identify mineral grades. Perez et al. (2011) employed 
principal component analysis to RGB representation to extract color 
features and combined with texture features from five different rock 
samples including massive sulfide, disseminated sulfide, “net textured”, 
gabbro and peridotite to recognize the composition. Chatterjee et al. 
(2010) utilized 189 features extracted from segmented images of a 
limestone mine and a neural network model to identify the grade at
tributes of limestone (CaO, Al2O3, Fe2O3 and SiO2). Among these 189 
features, 112 color features were involved and 42 features were gray 
level moments. 

In the mining site considered in this work, the assaying technique 
employed is X-Ray Fluorescence (XRF) of pellets prepared from drilling 
chips. As this procedure is expensive, time consuming and provides the 
results in a delayed mode, this study proposes an alternative, novel 
method for estimating the ore grade from images of borehole logs, using 
the relations between ore grades and RGB pixel intensities of in-borehole 
images. 

2. Data collection and description 

The tests were carried out in the Lújar underground mine located in 
Órgiva (Granada province, Spain). A fluor-lead deposit composed by 
fluorite, galena and dolomite as gangue is mined. The host rock is mainly 
dark massive dolomicrite and limestone in which fluorite occurs as dark 
and white-purple crystals that may develop zebra patterns in some cases. 
The fact that the ore appears as fault-related veins or as irregular strata 
bound bodies with typical grades in the order of 15 % in fluorite com
plicates the in-situ ore recognition (Amor and Navarro, 2016; Ilin et al., 
2019). 

Fig. 1. Drill log of borehole H24. Drilling stops are marked by black dashed lines; a potential rock mass discontinuity is highlighted by a red rectangle.  
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Six pseudo-horizontal boreholes were drilled in the same mine area 
by an Atlas Copco 282 jumbo equipped with a measurement-while- 
drilling (MWD) system. The holes had an approximate length of 3.5 
m, a diameter of 102 mm and an upward inclination of 5◦. This allowed 
their cleaning by the injection of water in order to improve the quality of 
the in-hole images. An endoscope inspection was carried out to verify 
the wall cleanliness and make sure that no faults were crossing the holes. 
A PVC pipe was used to push the logging tool, with the wireline in its 
axis, inside the hole. The tool was then pulled back to surface by means 
of constant-velocity winch. 

2.1. Drill chips assaying 

Drilling chips were collected by means of a tray placed below the 
borehole collar. Drilling was stopped at approximate intervals of 0.5 m 
to collect the detritus and place a new tray. Eight samples were collected 
for every hole making up 48 samples in total. Drops in percussive 
pressure and rotation pressure recorded in the drilling logs were used to 
identify the drilling stops and obtain the corresponding initial and final 
depths of each sample, see the dashed black lines in the drilling records 
shown as an example in Fig. 1. The rotation pressure is sensitive to other 
effects related to the characteristics of the rock mass, such as the pres
ence of structural discontinuities, as is the case of the red dashed rect
angle in Fig. 1, but these drops are easily distinguished from the drill 
stop ones. 

The drilling chips from each sample, approximately 1.3 kg, were 
quartered to 1/8 of the initial mass with a sample splitter with eight slots 
of 40 mm of aperture. This material was dried at 90 ◦C during 24 h, and 
ground in a vibratory disc mill (Restch RM100) to a size below 80 μm. 
After this, the sample was quartered to 1/16 to obtain a 10 g sample 
from which powder pellets were prepared. The pellets were analyzed in 
an X-Ray Fluorescence (XRF) Thermo Scientific ARL OPTIM’X WDXRF 
50 kV analyzer, composed by Rhodium anode, crystals LiF200, InSb and 
AX06, and standard patterns of Thermo Fisher Sci; the software Oxsas 
2.2 of Thermo Fisher Sci was used. The amount of compounds, mainly 
CaF2, CaCO3, CaMg(CO3)2, SiO2, Fe2O3 and Al2O3, is obtained through 
stoichiometric balance of the composition provided by the XRF analyzer. 
Fig. 2 shows for each borehole, the initial and final depth of each drilling 
chips sample and the corresponding fluorite percentage; the composi
tion of the rock in each of these sections is assumed to be uniform and it 
is classified as function of the fluorite content as waste (W, CaF2 < 10 %, 
blue in Fig. 2), low grade ore (LG, 10 ≤ CaF2 < 20 %, green) and medium 
grade ore (MG, 20 ≤ CaF2 < 45 %, red). 

Fig. 2. Ore grades of drilling chip samples. The quantity in each section is the percentage of fluorite content and the color indicates the rock classification: blue for 
waste, green for low grade ore and red for medium grade ore. The lengths scanned are indicated by grey (white light) and violet (UV light) lines. 

Fig. 3. Bottom part of the logging tool (left) and final stages of borehole 
surveying with the forward centralizer and the glass tube inside the hole (right). 
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2.2. Borehole logging 

Boreholes were logged with an optical televiewer manufactured by 
ALT composed by a QL40 OBI-2G logging tool of 1.5 m length, a data 
acquisition system, a mini-winch that pulls the logging tool at constant 
velocity and a computer to set-up the tool, display, and record the im
ages of the borehole walls. The logging tool has 3-axis accelerometers 
and magnetometers in its central part to survey the borehole path and a 
digital image sensor at the bottom, with an active pixel array of 1.2 Mpx 
and fisheye matching optics (see left image in Fig. 3). It incorporates two 
LED series for lighting the internal walls: one emits white light and the 
other UV light. The latter has a wavelength range 340 to 400 nm with 
the emission peak at 365 nm. Each borehole was logged first with white 
light to record the natural colors of the rocks and second with ultraviolet 
light to outline the fluorescence of the main rock types. 

The logging tool was centered with respect to the borehole axis with 
two centralizers mounted at the top (rear) and bottom (forward) parts of 
the probe; the rear one can be seen outside the borehole in Fig. 3. It was 
pushed with two plastic rigid pipes until the bottom of the hole though 
this was not always reached when high resistance was encountered to 
avoid damage to the optical system. From the end position, the mini- 

winch pulled the probe outwards while the borehole wall was scanned 
with an axial and circumferential resolution of 0.36 and 0.33 mm/px, 
respectively. Since the optical sensor is positioned at the end of the 
probe it was necessary to manually sustain the probe until the sensor 
was near the collar (see Fig. 3). Despite this, some 0.5 to 1.5 m of the 
borehole length in the collar section, depending on the scan, could not 
be scanned, see Fig. 2. The sections of the borehole scanned with white 
and UV lights considered for the analysis are coincident with the initial 
and final depths of the drilling chips samples. The actual lengths covered 
are shown with grey and violet bars below the fluorite compositions for 
each borehole in Fig. 2. Borehole sections associated to each drilling 
sample that are not fully scanned with the televiewer from the initial and 
final depths of each sample are discarded, as it is unknown whether the 
scanned part of the section is representative of the chemical composition 
of the actual drilling chips sample. This reduces the number of sections 
that can be correlated with rock images at the corresponding depths to 
36 for scans with white light and 32 for those with UV light. 

Despite that the size of the resulting database is relatively small to 
develop a model that could be generalized to other geological conditions 
or operations, it serves the purpose of validating the potential of the 
methodology proposed, in which the percentile color intensities of 

Fig. 4. Section of borehole H20. From left to right: lithology, televiewer processed image and RGB logs with white and UV illumination.  
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borehole images are used to automatically assess the ore grade. 

2.3. Image processing 

Fig. 4 shows a typical example of televiewer logs from scans with 
white and UV lights at a length interval in which fluorite was defined 
visually by an experienced geologist; the assay of drilling chips classifies 
the rock in that section as medium grade ore (see Fig. 2), which is 
compatible with the presence of dolomitic breccia observed. For each 
scan, the RGB value of each pixel is calculated by WellCAD (ALT, 2020) 
and it is represented by a colour palette in the three columns on the right 
of the corresponding image of the borehole walls in Fig. 4. This gives, for 
each light type, three 2D matrices for red, green and blue colors with 
intensities in the range 0–255. The corresponding mean color intensity 
at each depth is the white curve (three 1D arrays). Note that no apparent 
difference is observed visually between fluorite and dolomitic breccia. 

The image of each section of the televiewer, defined by the initial and 
final depths of the drill chips samples collected for assaying, is formed by 
approximately 1500 sets of red, green and blue color intensities. To 
characterize this color information, percentiles 10, 20, …, 100 of the 
distribution of pixel intensities of red, green and blue colors in that 
section are calculated; this leads to two triplets of percentiles of color 
intensities (PCI) of pixels, (WR,p,WG,p,WB,p) and (UVR,p,UVG,p,UVB,p) for 

each hole section and p percentile for the white and UV light scans (p =
10, 20, …, 100), making up 30 PCI for each hole section and type of light 
scan. The cumulative distribution functions (CDFs) of pixel intensities of 
red, green and blue from each scan type are shown in Fig. 5. They are 
colored as function of the fluorite content (hot colors represent medium 
ore grade; cold ones correspond to waste). 

Although some trend between PCI and CaF2 content can be observed, 
mainly for green and blue colors from white light scans (see central and 
right graphs in Fig. 5), these relations are not easily described with 
simple analytical functions of the PCI that could be applied in a classical 
multivariant analysis. The resort to advanced machine learning tech
niques to explore such complex relationship appears to be natural. 

3. Data pre-processing 

The sets of triplets, (WR,p,WG,p,WB,p) and (UVR,p,UVG,p,UVB,p), p =
10,20,…,100, for the sections considered are selected as input param
eters; the respective fluorite content and grade classification are taken as 
the output for the machine learning algorithms. 

The combination of the three possible input sets (i.e. PCI from white 
light, from UV light and both) and two types of feature extraction 
techniques (i.e. principal component analysis and correlation analysis) 
to reduce the size of the input dimension are proposed. This makes up six 
different modeling scenarios that are summarized in Table 1; they are 
identified with two letters, the first one describes the light source (W for 
white light scans, UV for UV light scans and WUV for the combination of 
color characteristics for white and UV light scans) and the second one 
describes the feature extraction technique (PCA for principal component 
analysis and CA for correlation analysis). 

3.1. Dataset partition 

The original dataset needs to be divided into training and testing sets. 
The first is used for developing the model and the second is used for 
verifying its generalization and robustness. Generally, the ratio of 

Fig. 5. Cumulative distribution functions of color intensities for white (top graphs) and UV light (bottom graphs) scans; data correspond to all six boreholes.  

Table 1 
Summary of scenarios according to input parameters and feature extraction.  

Scenario Input parametersa Feature 
extraction 

No. of training/ 
testing cases 

WPCA (WR,p,WG,p,WB,p) PCA 30/6 
WCA CA 30/6 
UVPCA (UVR,p ,UVG,p,UVB,p) PCA 26/6 
UVCA CA 26/6 
WUVPCA (WR,p,WG,p,WB,p,UVR,p ,

UVG,p,UVB,p)

PCA 26/6 
WUVCA CA 26/6  

a p = 10,20,…,100. 
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training to testing set cases is 8:2 or 7:3 (Koopialipoor et al., 2019; Li 
et al., 2021a; Li et al., 2021b), which can be tuned according to the scale 
of the data. The cases of valid scans are 36 for W light and 32 for UV 
light, as explained in Section 2.2. They are divided in training/testing 
30/6 and 26/6 respectively, as shown in Table 1. For the combined use 
of the W and UV light, data from both scans must be available, so the 
number of valid scans is in this case equal to the number of UV valid 
scans i.e. 32. The cases of waste are 16 and 15 for W and UV light scans, 
respectively; sections of low grade are 14 and 12 for W and UV light 
scans, respectively, and sections of medium grade are scarce, 6 and 5 for 
white and UV light scans. This unbalanced number of cases of the three 
grades may lead to uncorrelated training and testing data sets, on which 
a weak generalization of the supervised learning would be obtained. For 
selecting the training and testing sets, one case was randomly selected 
from each borehole (hence six cases are selected, see Table 1) and used 
for developing the testing set and the other cases constituted the training 
set. Although they don’t fully meet the 8:2 rule, they are still reasonable 
in view of the number of scan data. For eliminating the adverse effects 
caused by unbalanced data division, a k-fold cross-validation (Anguita 
et al., 2012; Fushiki, 2011; Rodriguez et al., 2009) is applied. It 
randomly separates the original training set into k equal-size subsets 
where k-1 subsets are used as a new training set and the remaining 
subset is used for validation. The algorithm searches for a model that 
leads to the best fitness value for the k sets of training samples. Ac
cording to some authors (Marcot and Hanea, 2021; Yadav and Shukla, 
2016), 5 or 10-fold cross-validation works well. Considering the scale of 
the training set, 5-fold cross-validation has been employed. 

The prediction ability of machine learning techniques is often 
assessed from only one random division of the dataset into training and 
testing sets. This prediction performance may not properly reflect the 
overall goodness of the dataset and the prediction ability of the model. 
The relatively small size of our datasets and their unbalanced nature 
may cause unstable prediction results as different partitions of the 
original dataset would lead to different prediction accuracy. In order to 
account for this, a repeated k-fold cross validation technique was 
employed where thirty random divisions of the dataset are implemented 
to produce thirty different combinations of training and testing sets. For 
each training set, the 5-fold cross validation is implemented. The 
average results from the thirty training/testing combinations provide a 
more robust evaluation of the prediction ability. 

3.2. Feature extraction 

For each section, the original inputs from W and UV scans are 30 
color intensities respectively which encompass a large input dimension 
compared with the size of the dataset. To reduce the complexity of 
calculation and preserve as much statistical information as possible, 
principal component analysis (PCA) and correlation analysis (CA) are 
considered. 

3.2.1. Principal component analysis 
PCA (Wold et al., 1987) finds new uncorrelated variables, or prin

cipal components, that are linear combinations of the original variables 
that maximize the variance between them. Substituting the original 
variables by a few principal components reduces the input dimension 
and simplifies the model fit. The cumulative variance is shown in 
Table 2; a percent of the total variance higher than 95 % is considered to 
define the number of components retained, this being 3 principal com
ponents for W and 8 principal components for UV datasets. 

3.2.2. Correlation analysis 
The results of a Spearman correlation analysis between PCI of pixels 

and the fluorite content are presented for each light source in Table 3; no 
results are shown when the intensity colors for a given percentile are 
constant, as occurs for the 100 percentiles from red and green with white 
light illumination. PCI with significant correlation (coefficient |r|≥0.3 
and p-value ≤ 0.05) have been selected as inputs (highlighted in bold in 
Table 3). For white light, this applies to green percentiles 10–40 and 
70–90 and most of the blue percentiles, while no red percentile meets 
the significance condition; for UV light, these are one percentile for red 
(100) and blue (30), and five percentiles for green (10, 40, 50, 90 and 
100). The different significances of correlations of PCI and fluorite 
content for different illuminating sources may indicate some differential 
optical response from the materials. 

4. The model 

The support vector machine (SVM) will be used in this study as the 
benchmark tool to predict fluorite grade (Support vector regression, 
SVR) or classify the rock into waste, low grade ore, and medium grade 
ore (Support vector classification, SVC), as function of an n-dimensional 
set of input variables (linear combinations of PCI defined from the PCA 
or the most relevant PCI obtained from CA). SVM was developed initially 
for tackling classification issues, and it can also be extended to solve 
regression problems (Quan et al., 2020; Vapnik, 1995). SVM is very 
appropriate for analyzing small databases with large-dimension input 
data, as is the case of this work, compared with other classical ap
proaches like artificial neural network and K-nearest neighbors (Qi and 
Tang, 2018). The main idea of SVC is to find the optimal separating 
hyperplane that correctly partitions the training dataset with the largest 
geometric separation, while SVR aims to find a function that deviates 
from every output by no more than a certain error for each training data 
point. Details of the SVM optimization can be found in Smola and 
Schölkopf (2004). 

The performance of SVM depends on certain parameters that must be 
optimized before testing the model. One of them is the penalty factor C 
that weights the cases with an error in excess of a certain value in the 
training phase; a high penalty factor means a low tolerance for predic
tion deviations and may induce over-fitting. Another setting is the in
ternal parameter γ of the kernel function used (a radial based function, 
Quan et al., 2020, in the present case), that controls the range of action 
of each support vector (e.g. small action range of the support vectors 
induces over-fitting). In order to optimize these parameters, a myriad of 
metaphor-based optimization algorithms of artificial intelligence-based 
models is available (Li et al., 2021a; Li et al., 2021b; Zhou et al., 2021a; 
Biswas et al., 2022. A common practice in these ML-based papers is to 
rate some of these algorithms according to the resulting performance to 

Table 2 
Percentage of the cumulative total variability in the data explained by each 
principal component.  

Light source 1 2 3 4 5 6 7 8 

Wa  65.1  93.1  97.3 – – – – – 
UV  62.6  73.9  82.3 87.6 90.9 92.9 94.7 95.7  

a Percentiles with constant intensity are discarded for the analysis. 

Table 3 
Correlation coefficients between PCI and fluorite content.   

White light UV light 

Percentile Red Green Blue Red Green Blue        

10 0.16 0.35  0.40  0.17  0.51  0.12 
20 0.12 0.33  0.39  0.28  0.25  0.29 
30 0.13 0.37  0.41  0.35  0.25  0.39 
40 0.12 0.36  0.39  0.22  0.42  0.30 
50 0.06 0.33  0.41  0.15  0.45  0.20 
60 − 0.01 0.31  0.45  0.11  0.30  0.21 
70 − 0.04 0.37  0.47  0.18  0.20  0.26 
80 − 0.10 0.42  0.48  0.10  0.27  0.31 
90 − 0.10 0.40  0.45  0.12  0.37  0.27 
100 – –  0.15  0.62  0.53  0.17 

Note: Bold numbers are |r|≥0.3 and p-value ≤ 0.05. 
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solve a specific problem; however, the prediction performance by 
different meta-heuristic algorithms is very similar. Regarding this, to 
address the performance of a bio-inspired meta-heuristic algorithm is not 
the motivation of this study, but to discuss the potential of percentile 
color intensity of images to assess the rock composition and the ore 
grade in particular by ML-based models. The salp swarm algorithm (SSA; 
Mirjalili et al., 2017) that has proved to be effective in solving different 
optimization problems in various domains (Li et al., 2021a; Li et al., 
2021b), it is used here in combination with SVM to select suitable 
support vector parameter combinations so as to prevent local optima. 

Salps are marine animals that form chain-like swarms where there is 
a leader salp and many follower salps. The leader plays an important 
role in leading the direction of follower salps and exploring the food 
source. In the SSA model, a population is generated at first which 

consists of one leader and some followers. The position of the leader 
would be updated iteratively to search for the best food source (i.e. 
fitness function, described by the MSE for the regression and the total 
accuracy for the classification; both metrics are described in Table 4). 
The two parameters C and γ of the support vector are connected with the 
position of the first salp and modified until an optimum condition is met 
within a maximum number of iterations. 

The position of the salp leader is updated within the searching 
domain through the following function: 

x1
m =

{
Fm + R1((ubm − lbm) )R2 + lbm,R3 ≥ 0
Fm − R1((ubm − lbm) )R2 + lbm,R3 ≤ 0 (1)  

where x1
m represents the position of the leader salp (first salp) in the mth 

dimension of domain (note that for this case, m = 2); Fm denotes the 

Table 4 
Summary of the performance metrics.  

Regression Formulaa Classification Formulab 

Coefficient of determination 
R2 = 1 −

∑N
i=1

(
yi − y′i

)2

∑N
i=1

(
yi − y

)2 

Total AcT =
TW + TLG + TMG

NW + NLG + NMG 

Variance accounted for 
VAF =

[

1 −
var

(
yi − y′i

)

var
(
yi
)

]

Â⋅100 
For waste (W) AcW =

TW

NW 

Root mean squared error 
RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
yi − y′i

)2
√ For low grade (LG) AcLG =

TLG

NLG 

Mean absolute percentage error 
MAPE =

100
N

∑N
i=1

⃒
⃒
⃒
⃒
yi − y′i

yi

⃒
⃒
⃒
⃒Â⋅  

For medium grade (MG) AcMG =
TMG

NMG   

a yi is the measured fluorite content, y′i the corresponding predicted value, y the mean of the measured fluorite contents, and N the number of measurements. 
b Ac means classification accuracy. Tc is the number of true positives of the c category (c is W for waste, LG for low grade and MG for medium grade). Nc is the number 

of sections of the c category. 

Fig. 6. A general optimization process of the selection of SVM hyper-parameters by SSA.  
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location of the food source of the mth dimension; ubm and lbm are the 
searching upper and lower bounds, respectively; R2 and R3 are random 
variables uniformly distributed in the interval [0,1], and R1 is calculated 
from the current iteration number (lp) and the total number of iterations 
(LP) as follows: 

R1 = 2e
−

(
4lp
LP

)2

(2) 

The position of the ith follower salp in the mth dimension is updated to 
search the food source in the local range as follows: 

xi
m =

1
2
(
xi

m + xi− 1
m

)
, i > 1 (3) 

A general sketch of the optimization process of SSA for C and γ is 
shown in Fig. 6. The swarm size (i.e. the number of salps) and the 
maximum number of iterations must be chosen, both being in fact sig
nificant optimization parameters, see Section 5. 

5. Results and discussion 

Regression and classification patterns are developed and evaluated 
for six scenarios of input parameters (see Table 1). The model was 
programmed in a Matlab (MATLAB, 2022) environment, with support 
vector machine code from LIBSVM (Chang and Lin, 2011). Input pa
rameters are the principal components selected in Section 3.2.1 for PCA 
and in Section 3.2.2 for CA. 

For regression, the output is the percentage of fluorite and for clas
sification, it is the fluorite grade class. Both regression and classification 
models utilize the same SSA parameters (swarm size and iteration 
number) and inputs. As explained in Section 4, similar to other swarm- 
based heuristic algorithms, swarm size and maximum iterations have a 
key impact on speed and prediction performance (Yu et al., 2020; Zhou 
et al., 2021b; Zhou et al., 2021c). Different iteration numbers and swarm 
sizes were tested. When swarm size and maximum iterations were small, 
the prediction performance was generally not stable and over-fitting or 
under-fitting sometimes occurred. A swarm size of 50 and a maximum 
iteration number of 200 were found to yield efficient optimization 

Table 5 
Main prediction performance statistics from full-data for white and UV light scans.  

Light Source  Training Testing  

R2 VAF MAPE RMSE R2 VAF MAPE RMSE 

WPCA Mean  0.92  92.60  0.21  2.37  0.63  68.82  0.47  5.08 
Min.  0.87  87.94  0.04  0.34  − 0.27  − 3.91  0.23  2.94 
Max.  1.00  99.86  0.32  3.09  0.87  97.00  0.63  9.06 
Std.  0.03  3.00  0.07  0.74  0.25  23.87  0.11  1.53 

WCA Mean  0.94  94.54  0.16  1.76  0.62  67.61  0.46  4.99 
Min.  0.82  82.29  0.04  0.33  − 0.42  − 34.89  0.27  2.73 
Max.  1.00  99.87  0.40  3.58  0.92  93.72  0.68  8.97 
Std.  0.05  5.26  0.12  1.17  0.37  34.37  0.09  1.69 

UVPCA Mean  0.94  94.09  0.13  1.67  0.54  57.89  0.45  5.40 
Min  0.84  84.30  0.03  0.29  0.14  14.61  0.23  2.47 
Max  1.00  99.88  0.33  3.32  0.91  92.93  0.79  7.98 
Std.  0.06  5.79  0.09  1.14  0.23  22.82  0.13  1.48 

UVCA Mean  0.80  80.30  0.25  3.62  0.60  66.55  0.38  4.96 
Min  0.71  71.50  0.04  0.80  0.00  0.23  0.15  1.89 
Max  0.99  99.10  0.33  4.41  0.95  95.74  0.81  8.32 
Std.  0.07  6.78  0.07  0.83  0.27  24.84  0.15  1.67 

Min: minimum; Max: maximum; Std.: standard deviation. 

Fig. 7. Average R2 from 30 divisions for “take one out” models.  
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results and, when increased, the prediction performance did not 
significantly improve while the computational time increased. Those 
values were thus adopted in all models. 

Despite that the model hyperparameters are optimized on the MSE 
(regression) and the total accuracy (classification), other metrics are 

considered (see Table 4) to describe the performance of the models. 
Table 5 shows the statistics of these metrics for the 30 training/testing 
datasets considered. 

For regression, four classical indicators have been employed: coef
ficient of determination (R2), variance accounted for (VAF), root mean 
squared error (RMSE) and mean absolute percentage error (MAPE). For 
classification, the classification accuracy for total samples (AcT), waste 
(AcW), low grade (AcLG) and medium grade (AcMG) have been used. As 
mentioned before, 30 random divisions of training and testing sets are 
carried out and for each of them, a prediction model is built; the same 
divisions are used for regression and classification for all scenarios. A 
summary of the main statistics of the metrics for regression scenarios 
WPCA, WCA, UVPCA and UVCA can be seen in Table 5 for training (TR) and 
testing (TS) sets. Taking the R2 as a specific research objective, the mean 
value for the training sets is excellent while it is lower for the testing sets. 

Some low, or even negative R2 occur (see the minimum values in 
Table 5) which could be due to outliers in the data. For detecting such 
outliers, one section is removed from the dataset and the remaining 
sections are used for developing the regression models. This is repeated 
until all sections have been individually removed. We can assume that if 
one section is an outlier, then the determination coefficient will increase 
significantly when it is not included in the calculation. In order to assess 

Fig. 8. Summary of the prediction performance of regression (left graphs) and classification (right graphs) for the six scenarios considered after removing section #5; 
green boxes correspond to training and blue boxes to testing; refer to Table 4 for descriptions of the metrics. 

Table A1 
PCA results after removing section #5.  

Light source 1 2 3 4 5 6 7 8 9 

Wa  63.06  93.26  97.41 – – – – – – 
UV  60.41  71.19  81.10 86.78 90.63 92.84 94.55 95.62 – 
WUVa  37.15  67.29  83.16 86.95 90.43 92.19 93.74 94.98 96.02  

a Percentiles with constant intensity are discarded for the analysis. 

Table A2 
Correlation coefficients between PCI and fluorite content after removing section 
#5.   

White light   UV light   

Percentile Red Green Blue Red Green Blue 

10 0.12 0.30  0.35  0.13  0.48  0.07 
20 0.08 0.28  0.34  0.23  0.19  0.24 
30 0.09 0.32  0.36  0.30  0.20  0.34 
40 0.08 0.31  0.34  0.16  0.37  0.24 
50 0.02 0.27  0.37  0.09  0.38  0.15 
60 − 0.05 0.26  0.41  0.07  0.23  0.16 
70 − 0.09 0.32  0.43  0.14  0.14  0.22 
80 − 0.14 0.37  0.44  0.05  0.20  0.27 
90 − 0.13 0.35  0.40  0.08  0.31  0.23 
100 – –  0.15  0.59  0.50  0.13 

Note: Bold numbers are |r|≥0.3 and p-value ≤ 0.05. 
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whether the improvement is significant from a statistical point of view, 
the 95-percentile of the determination coefficient is employed as crite
rion. All four scenarios are tested, i.e., WPCA, WCA, UVPCA and UVCA. If 
the case removed improves the prediction performance in most sce
narios, then it can be considered a candidate for outlier. The ‘take one 
out’ method involves: i) feature extraction (PCA and CA) from the new 
dataset; ii) random divisions of the dataset into 30 sets of training and 
testing data (the testing set is always formed by 6 samples and the 
training by 29 for white light and 25 for UV light), and iii) train and test 
the prediction model for each of the random divisions. This operation is 
repeated 36 times and 32 times for W- and UV-based scenarios, 
respectively, until all models leaving out one section each are built. 

When an outlier is removed from the dataset, significantly better 

prediction performance will be procured and this will result in a 
significantly higher R2. Fig. 7 shows the mean R2 of the 30 random di
visions for all regression models with one section removed; the 
numbering of sections is (see Fig. 2) from collar to bottom, hole H20 to 
H25, so that section 1 is 29.4 % CaF2 and the last section (#36) is 3.9 % 
CaF2. Sections #6, #11, #12 and #30 do not exist in the UV dataset. The 
horizontal lines in Fig. 6 show the 95 percentiles of R2. The following 
sections removal score above this percentile: WPCA: #5, #15; WCA: #5; 
#32; UVPCA: #5, #31; UVCA: #1, #32. 

The removal of section #5 improves outstandingly the results of 
three out of four scenarios (it scores at percentiles 95.8, 98.6, 98.5 and 
88.9) so this section could be an outlier. Section #32 could also be a 
candidate although its R2 only scores above 95 % in two cases, while in 

Table A3 
Regression results.  

Regression  Training set Testing set   

R2 VAF MAPE RMSE R2 VAF MAPE RMSE 

WPCA Mean  0.90  90.30  0.26  2.68  0.73  76.93  0.47  4.65  
Min  0.84  84.28  0.04  0.34  0.33  37.39  0.20  3.08  
Max  1.00  99.83  0.37  3.40  0.90  92.78  0.76  9.38  
Std.  0.03  3.21  0.08  0.59  0.13  11.78  0.13  1.42 

WCA Mean  0.78  78.01  0.39  4.01  0.70  71.87  0.50  4.82  
Min  0.67  68.25  0.12  2.07  0.46  50.51  0.33  3.49  
Max  0.94  94.24  0.50  4.83  0.88  88.68  0.63  6.24  
Std.  0.09  8.47  0.13  0.92  0.10  9.31  0.08  0.67 

UVPCA Mean  0.99  99.08  0.05  0.48  0.61  65.01  0.48  5.15  
Min  0.88  87.92  0.03  0.28  0.24  26.45  0.23  2.60  
Max  1.00  99.87  0.19  2.58  0.90  89.60  0.94  7.36  
Std.  0.03  2.51  0.04  0.55  0.19  17.99  0.15  1.32 

UVCA Mean  0.75  76.04  0.30  3.77  0.60  66.90  0.47  5.30  
Min  0.65  67.76  0.12  1.78  − 0.03  11.88  0.29  3.02  
Max  0.95  94.96  0.37  4.60  0.87  87.26  0.91  7.93  
Std.  0.07  6.47  0.05  0.60  0.22  20.59  0.13  1.37 

WUVPCA Mean  0.99  99.35  0.04  0.44  0.83  84.72  0.33  3.32  
Min  0.93  93.02  0.03  0.27  0.64  67.34  0.14  1.80  
Max  1.00  99.88  0.15  1.99  0.95  97.55  0.56  5.54  
Std.  0.02  1.60  0.03  0.45  0.09  7.71  0.11  0.90 

WUVCA Mean  0.89  89.41  0.21  2.48  0.77  79.81  0.39  4.03  
Min  0.84  84.33  0.03  0.29  0.48  60.49  0.25  2.63  
Max  1.00  99.85  0.30  3.12  0.91  91.59  0.58  6.07  
Std.  0.04  3.46  0.06  0.55  0.10  9.52  0.09  0.85  

Table A4 
Classification results.  

Classification  Training set Testing set   

AcT AcW AcLG AcMG AcT AcW AcLG AcMG 

WPCA Mean  0.95  0.92  0.96  1.00  0.84  0.84  0.77  1.00  
Min  0.83  0.77  0.83  1.00  0.50  0.50  0.00  1.00  
Max  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  
Std.  0.05  0.07  0.06  0.00  0.12  0.19  0.30  0.00 

WCA Mean  0.88  0.90  0.82  1.00  0.76  0.76  0.67  1.00  
Min  0.69  0.69  0.36  1.00  0.50  0.33  0.00  1.00  
Max  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  
Std.  0.09  0.09  0.18  0.00  0.11  0.24  0.30  0.00 

UVPCA Mean  0.96  0.94  0.97  0.99  0.71  0.76  0.62  0.93  
Min  0.68  0.42  0.67  0.67  0.33  0.00  0.00  0.00  
Max  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  
Std.  0.08  0.14  0.08  0.06  0.15  0.29  0.33  0.25 

UVCA Mean  0.85  0.90  0.77  0.88  0.58  0.71  0.38  0.73  
Min  0.72  0.75  0.56  0.67  0.17  0.33  0.00  0.00  
Max  1.00  1.00  1.00  1.00  0.83  1.00  1.00  1.00  
Std.  0.11  0.07  0.17  0.16  0.17  0.25  0.36  0.45 

WUVPCA Mean  0.99  0.98  0.99  1.00  0.81  0.79  0.74  1.00  
Min  0.88  0.92  0.78  1.00  0.50  0.00  0.00  1.00  
Max  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  
Std.  0.03  0.03  0.05  0.00  0.19  0.27  0.31  0.00 

WUVCA Mean  0.91  0.96  0.81  1.00  0.79  0.84  0.66  0.97  
Min  0.80  0.75  0.44  1.00  0.50  0.33  0.00  0.00  
Max  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  
Std.  0.07  0.07  0.14  0.00  0.12  0.20  0.29  0.18  
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the other two is nowhere near that threshold. For this reason, only 
section #5 (i.e. fifth section of borehole H20, with 27.6 % CaF2) was 
removed. We suspect that the reason for its offending behavior is uneven 
sampling with an uncertain grade rating, probably with lower fluorite 
percentage than the actual one; higher fluorite percentage has a slight 
right shift tendency for G- and B-CDF plots as Fig. 5 shows, where the 
27.6 % CaF2 section lies in the rightmost position, though not being the 
section with the highest-grade. Interestingly, the same procedure was 
implemented for classification scenarios but the classification results 
were not noticeably influenced by any single section removal, which can 
be explained because of the relatively broad classification ranges. For 
the relevant case of Section 5, this sample has a measured grade of 27.6 
%, and is usually wrongly predicted in the regression with a grade much 
in excess of that value, although still falling in the medium grade ore 
class, that covers the range 20 ≤ CaF2 < 45 %, so being correctly 
classified. 

After removal of section #5, the PCA and CA selection is redone with 
the remaining 35 white and 31 UV light scans and also with combined 
WUV data. The cumulative total variability explained by each principal 
component is different but the number of components considered as 
inputs are the same as in Table 2 for W and UV sets, while one less 
component is required for WUV. For CA results, significantly correlated 
PCI are fewer for both white light and UV light scans compared with the 
results before removing section #5; however, significant correlations are 
still obtained for most of the blue percentiles from white scans. The 
detailed results can be seen in Tables A.1 and A.2 in the Appendix. A 
summary of the main metrics statistics (where 30 new random divisions 
were employed for each scenario) can be seen in Tables A.3 and A.4 in 
the Appendix. It appears as if principal component inputs are more 
sensitive to outliers in the UV scenario, both W and UV light (left graphs 
in Fig. 6) than the straight variables selected as having a better corre
lation with grade (right graphs in Fig. 6). In the WCA analysis, section 5 
barely exceeds the 95 % threshold, see Fig. 7 upper right plot, while in 
the UVCA analysis, the removal of section 5 does not relevantly affect R2. 
Fig. 8 shows boxplots of the distributions of the metrics for SVR and SVC 
for the training (green boxes) and testing (blue boxes) sets. 

In both regression and classification, PCA provides in general better 
results than CA in terms of mean and dispersion of the metrics consid
ered. This is more evident for regression when the combination of colors 
from white and UV lights (WUV) is considered. These results indicate 
that CA can capture some significant optical information from tele
viewer scans, but probably ignores some supplementary information 
that can contribute to characterize the fluorite grade, while the linear 
combinations of PCI in the principal components provide with a richer 
information on the pixel properties. 

For regression testing sets, UV has worse R2, VAF and RMSE than W 
light and slightly better MAPE. The mean and standard deviation of the 
RMSE for PCA are 5.15 ± 1.32 % (UVPCA) and 4.65 ± 1.42 % (WPCA), 
with mean R2 of 0.61 and 0.73, respectively. The best predictions ac
cording to the four metrics considered are obtained when both light 
sources are combined (WUVPCA); the mean RMSE is then 3.32 ± 0.90 %, 
with a determination coefficient of 0.83 ± 0.09. 

The inputs from WPCA provide the best classification accuracies for 
all rock classes: 0.84 ± 0.12, 0.84 ± 0.19, 0.77 ± 0.30, and 1 for total, 
waste, low grade and medium grade for testing sets. For the waste, this 
means that 16 % of the samples are classified wrongly as ore in average 
terms, while 23 % of low-grade ore sections are misclassified. All me
dium grade ore sections are classified correctly for the 30 divisions of the 
dataset. Low grade ore is generally the category with a worse classifi
cation accuracy compared with waste and medium grade. These metrics 
involve that no further chemical assaying is required when a sample is 
classified as medium grade, while the classification into the other rock 
classes should be taken as first estimation of the ore grade. Such esti
mation would need to be confirmed through conventional assaying, 
especially for low-grade ore, to increase the reliability of the results. 
Enlarging the database would likely improve the model performance 

increasing the significance of the results, allowing a further reduction in 
the amount of chemical analyses. 

For case studies where it is not possible to enlarge the dataset 
available for the model development, and relatively small databases 
have to be employed, repeated cross-validation has proved to be a good 
strategy. Repeated cross-validation can also be combined with other 
machine learning or deep learning techniques (Phoon and Zhang, 2023), 
such as convolutional neural networks (Zhang et al., 2021), random 
forest (Liu et al., 2023: Fernández et al., 2023), or recurrent neural 
networks (Zhang et al., 2022), all of them applied to improving pre
diction models in geoscience and geotechnical problems. 

6. Conclusions 

This paper proposes a new fluorite grade prediction approach based 
on RGB values obtained from optical televiewer scanning and machine 
learning techniques in the Lújar underground mine located in Órgiva, 
Granada, Spain. RGB intensities of the pixels are procured from borehole 
walls by televiewer scanning with white and UV light illumination. The 
composition of the rock corresponding to the image logs was determined 
by chemical analysis of the drill cuttings sampled and used as the output. 
Percentiles of the color intensities (PCI) of borehole images are used as 
input parameters for regression and classification issues of fluorite 
grade. Three types of color information have been tested, comprising 
PCI from white light scans (W), UV light scans and the combination of 
both (WUV). Two kinds of feature extraction techniques are employed 
for input selection: the first one is from the significantly correlated in
puts with fluorite components; the second one is from PCA technique. 

The support vector machine (SVM) is used to establish the prediction 
models. The hyperparameters of the SVM (C and γ) are optimized using a 
salp swarm metaheuristic algorithm. The results of the prediction 
models are assessed by repeated cross-validation and rated with classical 
statistical indicators. A “take one out” method is proposed for outlier 
data detection. One of the data sections was removed with this method, 
resulting in an improved prediction capacity. 

In general, the combination of white light and UV light scans is more 
effective to predict fluorite grade from regression. If a single light source 
is used, the white light would be recommended. The average regression 
results for testing sets are R2 = 0.83 and RMSE = 3.32 % from WUVPCA 
scenario. For classification, the best result is obtained with white light, 
WPCA, with average classification accuracies, of 0.84 (total), 0.84 (for 
waste), 0.77 (for low grade ore) and 1 (for medium-grade ores). 

The relatively low-cost and convenience of ore image procurement 
and processing makes this novel approach robust and easy to implement 
for fluorite grade prediction. Given the limited errors and acceptable 
prediction accuracies, the approach described here can be used as a first 
assessment of the fluorite grade, helping to save a fraction of laboratory 
analysis work. Additional work is needed in order to investigate the 
reliability e.g. with other fluorite ores or other minerals. The collection 
of larger datasets would improve the significance of the results, but, 
since the models are intrinsically site dependent, they can hardly be 
generalized to other operations. However, the method proposed can be 
adapted to other mining sites in order to develop an ore grade prediction 
model based on RGB intensities of the images of the blasthole walls. 
Such a methodology will reduce the time offset for grade control, 
especially when medium ore grade is observed, allowing to detect these 
areas from the first steps of the drilling and to take prompt decisions on 
mine development. The availabilty of a system that would automatically 
log the boreholes would boost this procedure towards a nearly online 
assessment of the ore grade of the deposit. The potential of UV light 
scans still needs to be explored, where different wavelengths are likely 
worthwhile investigating to improve the prediction accuracy of fluorite 
ore. 
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Berrezueta, E., Ordóñez-Casado, B., Bonilla, W., Banda, R., Castroviejo, R., Carrión, P., 
Puglla, S., 2016. Ore petrography using optical image analysis: application to 
Zaruma-Portovelo deposit (Ecuador). Geosciences 6 (2), 30. https://doi.org/ 
10.3390/geosciences6020030. 

Biswas, R., Li, E., Zhang, N., Kumar, S., Rai, B., Zhou, J., 2022. Development of hybrid 
models using metaheuristic optimization techniques to predict the carbonation 
depth of fly ash concrete. Constr. Build. Mater. 346, 128483 https://doi.org/ 
10.1016/j.conbuildmat.2022.128483. 

Chang, C.C., Lin, C.J., 2011. LIBSVM: a library for support vector machines. ACM Trans. 
Intell. Syst. Technol. 2 (3), 1–27. https://doi.org/10.1145/1961189.1961199. 

Chatterjee, S., Bhattacherjee, A., Samanta, B., Pal, S.K., 2010. Image-based quality 
monitoring system of limestone ore grades. Comput. Ind. 61 (5), 391–408. https:// 
doi.org/10.1016/j.compind.2009.10.003. 

Desta, F.S., Buxton, M.W., 2017. The use of RGB imaging and FTIR sensors for mineral 
mapping in the Reiche Zeche underground test mine, Freiberg. Proceedings of Real 
Time Mining - International Raw Materials Extraction Innovation Conference: 10th 
& 11th, Amsterdam, The Netherlands. https://nbn-resolving.org/urn:nbn:de:bsz: 
105-qucosa-231302. 

Donskoi, E., Suthers, S.P., Fradd, S.B., Young, J.M., Campbell, J.J., Raynlyn, T.D., 
Clout, J.M.F., 2007. Utilization of optical image analysis and automatic texture 
classification for iron ore particle characterisation. Miner. Eng. 20 (5), 461–471. 
https://doi.org/10.1016/j.mineng.2006.12.005. 

Donskoi, E., Manuel, J.R., Austin, P., Poliakov, A., Peterson, M.J., Hapugoda, S., 2013. 
Comparative study of iron ore characterisation using a scanning electron microscope 
and optical image analysis. Appl. Earth Sci.: Trans. Inst. 122 (4), 217–229. https:// 
doi.org/10.1179/1743275814Y.0000000042. 

Donskoi, E., Poliakov, A., Manuel, J.R., Peterson, M., Hapugoda, S., 2015. Novel 
developments in optical image analysis for iron ore, sinter and coke characterisation. 
Appl. Earth Sci.: Trans. Inst. 124 (4), 227–244. https://doi.org/10.1179/ 
1743275815Y.0000000013. 

Dumakor-Dupey, N.K., Arya, S., 2021. Machine Learning—A review of applications in 
mineral resource estimation. Energies 14 (14), 4079. https://doi.org/10.3390/ 
en14144079. 

Fernández, A., Sanchidrián, J.A., Segarra, P., Gómez, S., Li, E., Navarro, R., 2023. Rock 
mass structural recognition from drill monitoring technology in underground mining 
using discontinuity index and machine learning techniques. Int. J. Min. Sci. Technol. 
33 (5), 555–571. https://doi.org/10.1016/j.ijmst.2023.02.004. 

Fushiki, T., 2011. Estimation of prediction error by using K-fold cross-validation. Stat. 
Comput. 21 (2), 137–146. https://doi.org/10.1007/s11222-009-9153-8. 

Ilin, A., Velasco, F., Navarro, R., Tornos, F., 2019. New data on Alpine type fluorite 
deposits: Case of Lújar mine in Betic Cordillera (SE Spain). MACLA: Revista Española 
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