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ABSTRACT 
Due to the high environmental risks and negative impact of a failure, tailings storage 
facilities (TSFs) need constant monitoring. Advanced mathematical models have been 
developed in the past to predict the behavior of TSFs and raise alerts if needed. To be 
precise and reliable, such models need a spatial distribution of soil types within the dam 
as an input. Getting this data from laboratory measurements is time and cost-
consuming. In this article, we propose an ANN-powered algorithm, which allows us to 
accurately estimate the soil distribution based on a cone penetration test (CPT). 

INTRODUCTION 
Tailings Storage Facility (TSF) belongs to the group of large-size geotechnical objects 
consisting of earth embankments intended for the cost effective storage of post-flotation 
waste and water. In this article, we focus on the active Żelazny Most facility operating 
as part of the activities of KGHM's underground copper ore mines in southwest Poland 
(Figure 1). A typical TSF stores fine residuals from mineral processing and is usually 
surrounded by tailings dams. The disposed materials of a TSF are usually the materials 
left over from the process of separating the non-economic fraction of the ore from the 
valuable fraction. In an ore processing plant, the ore undergoes crushing and grinding 
processes. As a result, fine material is obtained, which makes it possible to obtain 
valuable raw materials in the flotation process. We can distinguish 3 main methods of 
expanding the TSF known in practice: upstream, centerline, and downstream as shown 
in Figure 1b. The upstream method is the most common and, at the same time, the most 
dangerous, so the continuous monitoring of TSFs is even more important. 

 
Figure 1. a) Zelazny Most TSF located in SW Poland, b) TSF construction 
methods: upstream, downstream, centerline. 
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The development of a TSF (design, expansion plan) requires knowledge of 
geotechnical properties, including grain size distribution, density, and mechanical and 
hydrogeological properties. For this purpose, geotechnical tests are used, including 
laboratory and field tests. Laboratory tests are very precise. They enable obtaining many 
geotechnical parameters. What's more, they are carried out under controlled research 
conditions. On the other hand, they are very expensive, which is the main reason for 
their limitated availability. The aim is therefore to intensify monitoring and field tests, 
which are very easy to conduct. Substantially, one field test provides a complete 
examination of the soil profile. Unfortunately, it is not possible to directly estimate 
geotechnical parameters on their basis. In the literature and practice, there are known 
applications that, based on correlations with laboratory tests, allow for a thorough 
examination of the structure of a geotechnical object. However, most of them concern 
natural soils. In the case of the Zelazny Most facility, we have dealings with tailings of 
anthropogenic origin. The tailings are made of waste generated at different times by 3 
mines and the mined ore itself is highly inhomogeneous. 

In this article, we focus on the application of various methods of classifying 
CPT field test data to determine the sands-to-fines ratio (SFR) parameter necessary to 
assess dam stability. The research material and preliminary methodology were 
developed as part of the IlluMINEation project (see the project website). At that time, 
several machine learning methods were used in the classification task (Koperska 2022). 
Research was also continued as part of the SEC4TD project (see the project website), 
where, due to the large variety of tested samples, it was decided to use deep learning 
methods. 

PROPOSED APPROACH 
The CPT test has a fixed standard process. An electric piezocone is pressed into the 
subsoil (see Figure 2), and at every 2 cm of depth, it measures the following parameters: 

• measured cone resistance 𝑞𝑞𝑐𝑐, 
• sleeve friction resistance 𝑓𝑓𝑠𝑠, and 
• dynamic pore water pressure 𝑢𝑢2. 

 
Figure 2. The diagram showing the course of the CPT test 

An example of laboratory research is grain size analysis, which is used to derive 
the particle size distribution of soils. Samples are taken from different elevations, and 
their height may vary. According to ASTM standards, the test consists of preparing a 
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soil sample and passing it through the sieves, arranged in the following order: the 
coarsest one on top and the finer sieves below. Based on measured results, the grain 
size distribution is specified, which is a plot of soil particle diameter versus the 
percentage of the dry sample by weight that is smaller than that diameter. In accordence 
with ASTM standard, the soil classification by size consists of five types presented in 
Table 1. 

Table 1. The five groups classified by grain size [mm] for ASTM standard. 
Class Clay Silt Sand Gravel Cobble 
Range of 
grain 
diameter  

≤ 0.005 (0.005, 0.075⟩  (0.075, 4.75⟩  (4.75, 75⟩ > 75 

 
After finding the grain size distribution, the coefficient of uniformity 𝐶𝐶𝑢𝑢 and the 

coefficient of curvature 𝐶𝐶𝑐𝑐 can be determined from the following formulas: 

𝐶𝐶𝑢𝑢 =
𝐷𝐷60
𝐷𝐷10

, 

𝐶𝐶𝑐𝑐 =
𝐷𝐷302

𝐷𝐷10𝐷𝐷60
, 

where 𝐷𝐷𝑥𝑥 is the grain size that corresponds to 𝑥𝑥 percent passing. 
The approach developed in the work consists of developing a flotation tailings 

classifier based on CPT measurements. The main objective is to estimate the SFR 
parameter in a more cost-effective and faster way compared to laboratory tests. The 
methods of classifying natural soils known in the literature use two parameters from the 
CPT test and specific classification thresholds. For example, methods using partition 
curves on two-dimensional plots can be found in Douglas 1981 and Robertson 1990. In 
Bhattacharya 2006, the authors present examples of the use of machine learning 
methods such as decision trees, ANN, or SVM. An interesting example of the general 
regression neural network application is presented in Kurup 2006. However, there is no 
guide on how to do this for tailings or other anthropological grounds. For this reason, 
continuing the study started in the IlluMINEation project, we are developing this 
research thread in order to achieve greater prediction accuracy for such difficult and 
complex geotechnical objects. 

DATA PREPARATION 
Based on grain-size distributions (see Figure 3) that were found in the laboratory and 
the ASTM norm, it is possible to define SFR as the proportion between coarse-grained 
and fine-grained particles:  

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 [%] +  𝐺𝐺𝐺𝐺𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺 [%] +  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺 [%]

𝑆𝑆𝑆𝑆𝐺𝐺𝑆𝑆 [%] +  𝐶𝐶𝐺𝐺𝑆𝑆𝐶𝐶 [%] . 
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Figure 3. Examples of grain size distributions. Upper panel: low SFR value, 
lower panel: high SFR value. 

Tailings are the partial product generated by crushing, milling, classifying, 
flotation, thickening, filtration, and drying processes. As reported by Stefanek 2017, 
tailings have the form of a slurry, in which solids represent 7 to 9% by volume, so SFR 
for them will have smaller values rather than greater ones, which is confirmed by the 
histogram presented in Figure 4 below. 

 
Figure 4. Histogram of SFR values. 

The data contains more than 40% values with SFR less than 1.15, and other 
possible ranges are significantly lower. Therefore, the dataset is imbalanced, so the 
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Synthetic Minority Oversampling Technique (SMOTE) was used to increase the 
number of rest values. For that purpose, it was necessary to classify SFR, which is why 
the values were assigned to three groups. As a method result, the number of higher SFR 
samples is increased.  

In the case of CPT measurements (see Figure 5), only parts that correspond to 
the soil samples that were taken for the grain size analysis are useful to the model. There 
are some cases where a small number of samples were taken, as shown in Figure 5A, 
so only a few readings of CPT are informative for the model. On the other hand, there 
are also CPT tests that have more corresponding parts, as shown in Figure 5B. 
Therefore, it is necessary to apply pre-processing to the whole probe for each test. Next, 
validated values that correspond to probes taken to the laboratory have to be aggregated 
into statistics. 

 
Figure 5. Examples of CPT tests measurements where A one sample B numerous 
samples (shadowed areas) were taken for Grain Size Analysis. 

Hence, the model-independent variables are the following statistics: mean, 
standard deviation, minimum, maximum, and quantiles (0.05, 0.25, 0.50, 0.75, 0.95) 
each from 𝑞𝑞𝑐𝑐, 𝑓𝑓𝑠𝑠, 𝑢𝑢2 measurements, and the dependent variable is SFR.  

METHODOLOGY 
The goal of this article is to test different machine learning approaches for the definition 
of SFR parameters based on the CPT measurements, with a special focus on artificial 
neural networks. First, we apply to our data three classic machine learning techniques: 
linear regression, random forest, and gradient boosting. The performance of these 
algorithms is then used as a baseline for the evaluation of the neural networks 
performance.  

We have limited ourselves to a relatively simple architecture, which includes 
only dense layers and dropout layers, which allows us to reduce the overfitting during 
model training (Srivastava 2014). Even in such a simple case, selecting the proper 
parameters of the model can be challenging, thus, in this article, we run a Monte Carlo 
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style optimization of network parameters. We test one hundred structures randomly 
selected from a pre-defined range of parameters, listed in Table 2.  

Table 2. Values of neural network parameters used during the optimization and 
their selected values, that assured the best performance 
Parameter Value range Best value 
Total number of dense 
layers 

[2, 30] 8 

Number of neurons in the 
first layer 

[8, 300] 239 

Total number of dropout 
layers 

[0, 3] 1 

Dropout value [0.1, 0.5] 0.1892 
 

At the beginning of the network, dense layers were alternated with dropout 
layers, until the maximum number of dropout layers was reached. For each consecutive 
new layer, the number of neurons equals the number of neurons in the previous layer 
times a random multiplier from the range [0.25, 1.25]. Such a range of multipliers 
allowed in general to decrease the sizes of consecutive dense layers, although some 
local increases are possible. Finally, some parameters were constant during 
optimization, such as: the optimizer (Adam), learning rate (0.001), activation function 
(relu), and loss function (mean squared error). Each out of one hundred randomly 
generated structure have been trained for 10 times in order to select the best performing 
model.  

As was mentioned before, to increase the number of higher SFR values, the 
SMOTE method was applied. Oversampling by creating ‘synthetic’ examples was 
proposed by Chawla 2002. This implementation uses five randomly chosen nearest 
neighbors and generates one ‘synthetic’ sample in the direction of each of them. That 
causes the classifier to create larger and less specific decision regions. Blagus 2013, 
investigated the performance of SMOTE on high-dimensional data and concluded that 
it is beneficial for k-NN classifiers if the number of variables is reduced by performing 
some type of variable selection. This method introduces a correlation between some 
samples, but not between variables. 

Furthermore, it is possible to classify tailings based on SFR values (see Table 
2) to the cohesive ground (class I-V) and non-cohesive (class VI): 

Table 3. SFR values separating tailings groups. 
Class I II III IV V VI 
Range of 
SFR  

≤ 0.001 (0.001, 0.6⟩  (0.6, 1.5⟩  (1.5, 2.5⟩  (2.5, 7.4⟩ > 7.4 

Source: Koperska et al. 2022. 
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RESULTS 
Results from the proposed neural network model were compared with such basic 
models as Linear Regression, Random Forest, and Gradient Boosting Method. Before 
the probe was oversampled, the results from basic models (see Figure 6 and Table 3) 
nor from the Neural Network model were not satisfying. 

 
Figure 6. Actual versus predicted SFR values for the basic methods.  

After the SMOTE method was used and the training set was class-balanced, as 
suggested in Hulse 2007, both the basic methods and neural network performance 
improved (see Figure 7 and Table 3). Regardless of the use of the oversampling method, 
the linear regression had the worst outcome. On the other hand, the greatest 
improvement was observed for the Gradient Boosting and Neural Network models, for 
which r-square increased the most. Moreover, the best results for the validation set were 
obtained from the model proposed by the authors. 

Table 4. R-square comparison for training and validation sets and different 
models with and without the previously used SMOTE method. 

Was the SMOTE 
method used? Set 

R-square for models 

Linear 
Regression 

Random 
Forest 

Gradient 
Boosting 

Neural 
Networ
k 

No 
Training 0.1012 0.8715 0.8789 0.9064 
Validatio
n 

0.101 0.2111 0.0845 0.158 

Yes 
Training 0.3362 0.9691 0.9123 0.9453 
Validatio
n 

0.1577 0.726 0.7472 0.7688 

 

 
Figure 7. Actual versus predicted SFR values for the basic methods, after 
SMOTE method was used. 
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Figure 8 shows the analysis of the number of layers in the proposed NN model. 
The histogram is right-skewed (the median is equal to eight, which is less than the mean, 
that is approximately nine). The models were put into three similar size groups. The 
first group was for the models with 2 to 6 layers; it was noticed that the r-square was 
the most varied there. The other two groups were more concentrated. Despite these 
differences, each group has a median significantly above 0.5.   

 
Figure 8. Left panel: histogram of the number of layers in the Neural Network 
model (NN). Right panel: Box-plots of R-square values for the specified ranges of 
the number of layers in the NN model. 

Figure 9 shows the analysis of the size of 1st layer in the NN model. The 
histogram is uniform-shaped, so selected ranges of sizes are of similar length. The first 
box plot has the highest IQR value, and its median r-square is below 0.5. In the other 
cases, whole boxes are above that threshold, and the medians of the coefficient of 
determination are close to 3rd quartiles. 

 
Figure 9. Left panel: histogram of the size of 1st layer in the NN model. Right 
panel: Box-plots of R-square values for the specified ranges of the size of  1st 
layers in the NN model. 

CONCLUSION 
In this article, a machine learning approach for the estimation of the SFR parameter for 
tailings based on cone penetration test (CPT) data is proposed. First, the process of data 
preparation and matching of CPT data and laboratory measurements is described. Then 
several conventional machine learning methods, such as linear regression, random 
forest, and gradient boosting, are applied to the data. Finally, an artificial neural 
network model is used. In order to select the optimal structure of the network, a Monte-
Carlo optimization procedure is proposed. 
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Initial results obtained by all models have shown very low efficiency on the 
validation dataset compared to the training data, which may suggest that the models 
were overfitted. It may be caused by an insufficient amount of data. Besides that, the 
distribution of SFR values in the training sample was very right-skewed. In order to 
tackle these issues, the synthetic minority oversampling technique (SMOTE) has been 
applied to the data. It allowed for an increase in the overall number of samples, 
especially the number of data points with higher SFR values. 

After the application of SMOTE, the results have improved significantly. All 
techniques besides linear regression have shown descent performance (R2 > 0.7), with 
the neural network model working the best (R2 = 0.7688). Comparison between 
different network structure parameters has shown that for the described problem, more 
complex structures performed better. Both the increase in network depth (i.e., the 
number of dense layers) and width (i.e., the number of neurons in the first layer) resulted 
in an increase in model performance.  

This leads us to the conclusion that the proposed method can be further 
improved by applying more complex neural network architectures, such as 
convolutional neural networks. On the other hand, in this case, overfitting risks emerge, 
so for such research, more data may be necessary. We are going to study the potential 
of this approach in our future research. 
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