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ABSTRACT

Current global re-localization algorithms are built on top of localization and mapping methods and
heavily rely on scan matching and direct point cloud feature extraction and therefore are vulnerable in
featureless demanding environments like caves and tunnels. In this article, we propose a novel global
re-localization framework that: a) does not require an initial guess, like most methods do, while b)
it has the capability to offer the top-k candidates to choose from and last but not least provides an
event-based re-localization trigger module for enabling, and c) supporting completely autonomous
robotic missions. With the focus on subterranean environments with low features, we opt to use
descriptors based on range images from 3D LiDAR scans in order to maintain the depth information
of the environment. In our novel approach, we make use of a state-of-the-art data-driven descriptor
extraction framework for place recognition and orientation regression and enhance it with the addition
of a junction detection module that also utilizes the descriptors for classification purposes.

Keywords global re-localization, sparse 3D LiDAR scans, 3D point cloud map, deep learning

1 Introduction

As autonomous robot exploration in GPS-denied environments is gaining more and more attention, it is constantly
creating the demand for robust algorithms, capable of handling harsh, poorly illuminated, unstructured and unexplored
environments, essentially making them safer for humans to explore Nikolakopoulos and Agha [2021], Lindqvist et al.
[2022]. An important part of an exploration or navigation mission is the ability to operate under a global map that
provides useful information for path planning, coordination of multiple robots, localization of objects and survivors in
Search And Rescue (SAR) missions. In these scenarios, it is common for the localization algorithms, to momentarily
fail due to sensor faults, dust particles or drifting, resulting in misalignment of the robot’s current pose in the global
map. Thus, the task of global re-localization focuses on estimating the current robot pose in a given map, enabling to
restart missions in previously mapped environments or correct the aforementioned misalignment.

Even though, camera images have been of great interest for place recognition, mainly due to their rich and descriptive
information, they struggle with environment changes and fail under low-light applications Kominiak et al. [2020], Agha
et al. [2021]. On the other hand, LiDAR sensors are immune to appearance changes and illumination Shan et al. [2020a]
and along with the advances of efficient data representations and feature descriptors of LiDAR point clouds through
deep learning, they have demonstrated promising results Schaupp et al. [2019], Du et al. [2020] in the field of computer
vision.

In this article, we will revisit the problem of global re-localization, by proposing an overall novel scheme with a
state-of-the-art data-driven descriptor extraction process for 3D LiDAR point clouds. With the focus on subterranean
environments with low features and multi-robot exploration, we present an event-based, global re-localization framework,
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(a) (b) (c)

Figure 1: (a) Initially, the LiDAR scan of the robot frameR is not aligned with the point cloud map of the map frame
M. (b) Then, during the re-localization process, the nearest submap based on the indexes of the vectors in the k-d tree,
denoted with green color, is chosen and used to find the transform T . (c) Finally, the LiDAR scan of the robot is aligned
with the map.

that extends the autonomy of the robots. Our contributions can be summarized as follows: (a) we introduce a complete
framework for re-localization in a given global 3D point cloud map, as a single file and not sets of point clouds. The
novel approach utilizes data-driven descriptors for place recognition, as depicted in Figure 2, with the ability to go
through the top-k candidates, which further extends the resiliency of the overall system. (b) Through real-world field
experiments we demonstrate a robust performance in terms of successful re-localization in challenging subterranean
environments and without the need of a manual initial guess, compared to other ROS Stanford Artificial Intelligence
Laboratory et al. available packages with a similar input format, such as LIO-SAM_based_relocalization Shan et al.
[2020b], FAST-LIO_localization Xu and Zhang [2021] and hdl_global_localization Koide et al. [2019]. (c) We propose a
novel modular architecture for driving descriptors towards specific events or tasks through the addition of a classification
module that can extend the autonomy of robot exploration, since the robot can decide when to trigger the re-localization
process based on an event, like the detection of a junction, that will maximize the likelihood of success. (d) With joint
training, negative mining, fine-tuning and label smoothing, we showcase the process of data-handling for transitioning
from big public datasets and place recognition solutions to learning from a few field mission data and a direct semantic
global re-localization approach that to the best of the authors’ knowledge is absent from the current literature.

2 Related work

Predominantly, the global re-localization problem is composed of two stages: (a) place recognition, which derives the
frame in the map that is topologically close to the current frame, and (b) pose estimation, which yields the relative pose
from the map frame to the current robot’s frame. Our proposed framework can be seen as a bridge between descriptor
extraction for place recognition and global pose estimation in a prebuilt point cloud map. Therefore, we divide this
Section into related work for learned descriptors for place recognition and/or pose estimation and related work for
available global re-localization solutions in a point cloud map.

2.1 Learned Descriptors:

Descriptors can be categorized as handcrafted He et al. [2016], Kim and Kim [2018], hybrid Vidanapathirana et al.
[2020] or learned based Schaupp et al. [2019], Du et al. [2020], Uy and Lee [2018], Vidanapathirana et al. [2021], Dubé
et al. [2018]. Handcrafted methods have the advantage of not requiring re-training to adapt to different environments or
platforms. Even though methods, such as the well known ScanContext Kim and Kim [2018] have demonstrated reliable
performance in varying scenarios, the discriminatory ability of such methods remains limited. As the name suggests,
hybrid methods, aim to unite mathematical models with data-driven models to benefit from both Shlezinger et al.
[2021]. First demonstrated by Locus Vidanapathirana et al. [2020], an approach for LiDAR based place recognition by
mathematically modeling the topological relationships and temporal consistencies of point segments, while structural
visual aspects of the segments were encoded using a data-driven 3D-CNN. Although it achieved state-of-the-art
performance on the KITTI dataset Geiger et al. [2013], it struggles to adapt to environments where the extracted
segments are structurally different to its training data. With LocNet Gidaris and Komodakis [2015], Yin et al. Yin et al.
[2017] used semi-handcrafted range histogram features, as an input to a 2D Convolutional Neural Network (CNN),
demonstrating the power of Deep Neural Networks (DNNs) to learn suitable data representations and exploiting the most
relevant cues in the input data. Learned based methods have shown promising results with the universal approximation
function properties of neural networks Hornik et al. [1989] and in the past years, CNNs have become the state-of-the-art
method for generating learning based descriptors, mainly due to their ability to find complex patterns in data Krizhevsky
et al. [2012]. PointNetVLAD Uy and Lee [2018] pioneered by using an end-to-end trainable global descriptor for
3D point cloud recognition. Extracted local features from PointNet Qi et al. [2016] are deployed to the NetVLAD
aggregator Arandjelović et al. [2015] to form a global descriptor of the scene. Recently developed SegMap Dubé

2



3DEG: Data-Driven Descriptor Extraction for Global re-localization in subterranean environments

et al. [2018] makes use of CNNs for encoding small dimensional representations and decoding to decompress the
representations back to the original input, as part of the five core modules: segment extraction, description, localization,
map reconstruction and1 Introductionare then used for both fetching the nearest neighbor place and for estimating yaw
discrepancy.

2.2 Global re-localization

Currently, there are only a few ROS packages available, that support global re-localization in a 3D point cloud map.
Koide et al. Koide et al. [2019] provided a series of packages that also included global re-localization as part of
the localization and mapping process. The localization process is done by an Unscented Kalman Filter-based pose
estimation, fusing IMU and 3D LiDAR data. In the sequel, the scheme performs a Normal Distribution Transform
(NDT) scan matching between the global map and the input scan in order to correct the estimated pose. For the global
re-localization it provides three engines, Branch and Bounce Search (BBS) Hess et al. [2016], FPFH+RANSAC Rusu
et al. [2009], Buch et al. [2013] or FPFH+Teaser++ Yang et al. [2021]. Based on LIO-SAM Shan et al. [2020b],
LIO-SAM_based_re-localization makes use of multiple factors, from the IMU, the 3D LiDAR and the loop closure
process, to jointly optimize the factor graph. The introduction of the key-frames and the sliding window scan-matching
approach, selectively registers new key-frames to a fixed size set of prior sub-key-frames in order to improve real-time
performance. The latest package developed is based on FAST-LIO Xu and Zhang [2021] and it provides a global pose
estimation in a pre-built point cloud map, by fusing low-frequency global localization and high-frequency odometry.
With a feature extraction process, edge and planar features are extracted from the input 3D LiDAR scan and along with
the IMU measurements are fed into the state estimation module.

Our proposed re-localization framework serves as a bridge between the place recognition methods and the available
integrated re-localization solutions. We address the limitation of most place recognition methods, that rely on data
sequences instead of a global point cloud map, as well as the fact that we introduce a modular architecture to improve
performance in certain environments depending on the features. In addition to this, we address the limitation of most
re-localization methods, that use a single global point cloud map file as an input, that they either need a manual initial
guess or they have a long computational time.

3 Methodology

Problem formulation

We will begin by defining the problem addressed in this article and outlining the novel proposed solution pipeline.
Afterwards, we will go in further details on the Neural Network architecture, the training process and the experimental
results. Our goal is to introduce a global re-localization algorithm able to yield a rigid transform T (p) = R(θ)p+ t, so
that, from a single 3D LiDAR point cloud scan P ⊂ R3, where {P} is a set of points p ∈ {P}, we can transform the
current robot frameR to the global map frameM, through a series of rotations R ∈ SO(3) and translations t ∈ R3.
For the rotation matrix we only consider the yaw angle θ, since roll and pitch angles do not change significantly when
exploring an underground environment with aerial or ground mobile robots, and for the translation vector we consider
all the three axes, x, y, z and therefore we are looking for a 4 DoF transform, keeping the complexity of the overall
system lower, yet delivering a robust result in most case scenarios.

T (p) := R →M (1)

To tackle this problem and acquire the transform T (p), we follow the steps depicted in Figure 2, which can be
summarized as: a) Map Partitioning, b) Point Cloud Projection, c) Descriptor Extraction, d) Initial Pose Estimation, and
e) Pose Refinement.

3.1 Map Partitioning

Since we are working directly with a point cloud map and not with data sequences, we need to partition the map into
individual scans in order to move on to the next stages of the pipeline. Essentially, we are creating a k − d tree database
of the visited places, which we can later search efficiently with the descriptors. By providing the point cloud map along
with the discrete trajectory, we partition the map into n scans, where n is the number of points in the trajectory. Then
we transform the point clouds according to the corresponding trajectory points, so we always have the partitioned map
points in respect to the robot frame and not the map frame.
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3.2 Point Cloud Projection

The Point Cloud Projection module is responsible for converting the incoming LiDAR point cloud scan v or the i-th
submap scan, into a 2D depth image, using a spherical projection model. A list of point coordinates px, py and pz are
mapped onto a 2D spherical grid, with their pixel value defined by the range of each point from the sensor’s frame.
The benefit of converting LiDAR point cloud scans into range images, over using a depth sensor, is the 360◦ view that
provides, giving us the capability of producing orientation invariant descriptors. On the downside, the converted range
images capture a less dense view of the surroundings compared to the one from a depth sensor, making it harder to
extract detailed features. One extra step in our pipeline before the point cloud projection, as seen on Figure 2, is that of
taking the registered point cloud from the LiDAR Inertial Odometry (LIO) module. By not using directly the incoming
point cloud scan but getting only the registered points, we can better match the resolution of the range images produced
from the map partitioning process.

3.3 Descriptor Extraction

The Descriptor Extraction module derives a compact representation for place recognition, orientation regression
and classification information from the surrounding topological characteristics. In this article, we make use of a
Convolutional Neural Network (CNN) that takes as an input 2D range images and generates two vectors q and w
respectively, which will be further discussed in subsection 4. The vector q encodes orientation invariant, place dependent
information, while the vector w is a compact representation for rotation variant information that is used for regressing
the yaw discrepancy in a later stage of the pipeline Schaupp et al. [2019]. We use the place specific vectors qn, generated
from the partitioned map scans, to build a k − d tree, and then with the current robot’s scan, we predict the vector qt,
and query the k − d tree for nearby place candidates.

3.4 Initial Pose Estimation

After querying the k − d tree with the current vector qt, we obtain the nearest neighbors along with the corresponding
vectors qk, wk, and therefore we can get the trajectory points associated, yielding the initial translation vector t0. The
next step is to feed the orientation estimation module with the rotation variant vectors wt and wk, which will estimate the
yaw discrepancy δθ between the query point cloud P and the nearest retrieved candidate from the partitioned map. With
δθ, we can form the rotation matrix R0(δθ) and have a complete initial estimation, denoted as: T0(p) = R0(δθ)p+ t0.

3.5 Pose Refinement

With the initial pose estimation, we can further refine the pose by using it as an initial condition in a registration
algorithm like Iterative Closest Point (ICP) Zhang [2014]. Furthermore, the distance between the two vectors qt and qk
can be utilized to further define the distance threshold of the registration method and make the process faster.

3.6 Event-based triggering

To further extend the autonomy of our robots, during field exploration missions, we make use of the classification
module to identify when the robot has reached a junction. This event will trigger the global re-localization process, for
example in multi-robot exploration, where more than one robot needs to share the same map. By providing the current
vector qt, the classifier can distinguish between a straight tunnel, a junction, or a turn. The event is triggered when a
junction is detected, as it is usually a more featured space and has a higher chance of success.

Figure 2: The overall pipeline of the proposed architecture. The red arrows follow the workflow of the current scan Pt,
while the green arrows follow the workflow of the given point cloud map.
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4 Neural Network

According to the aforementioned related work, we have decided to work with a network architecture based on 2D range
images generated from 3D LiDAR scans, and not with the point clouds directly, since the deep learning advancements
in feature extraction from images have always demonstrated a robust result. Therefore, our network architecture and
descriptor extraction process is based on Schaupp et al. [2019] and is adjusted following the principles described
in Simonyan and Zisserman [2014], Appalaraju and Chaoji [2017], as well as our own proposed addition for driving
learned descriptors to certain features.

4.1 Network Architecture

The architecture of the proposed CNN is composed of 2D convolutional layers followed by Max Pooling layers. Then,
the Fully Connected layers compress the features and map them into a compact descriptor representation, as depicted
in Figure 3. We start with 64 filters for the first convolutional layer and a 5×5 filter size, since we want a larger area
to compensate for the sparse nature of our depth images. For the other two layers, we move down to 32 filters with a
3×3 filter size. The output of the descriptor extractor are 2×64×1 vectors, q and w respectively. As mentioned before,
the vector q encodes place dependent information and is invariant to orientation changes, while w is an orientation
specific vector and is used to decrease the angle discrepancy Schaupp et al. [2019]. This process is handled by an
extra orientation estimation module, which takes as an input two vectors w and outputs a 2×1 vector yyaw, after two
fully connected layers and a tanh activation function. The third module of the presented network is a classifier and is
consisted of two fully connected layers and a softmax activation function. In this case, we use the classifier to detect the
topological characteristics of the surrounding environment and more specific, to classify among: (a) a straight tunnel,
(b) a junction, or (c) a turn. The classification process is performed based on a derived vector q and depending on the
mission, the classifier can be trained on detecting other characteristics, for example pipelines or shafts.

4.2 Loss functions

The overall network is composed of three different modules, where each one of them pursues a different goal. The
descriptor extraction module needs to find two orthogonal vectors q and w. The orientation estimation module estimates
the yaw difference from two compact vectors, w and the classifier has the goal of predicting the correct class, based on
a descriptor vector q. For each of these three goals, a loss function is defined, denoted as Lpr for the place-recognition
loss, Lθ for the orientation loss and Lc for the classifier’s loss. Starting with Lpr, in order to train our network for
the task of place recognition, we use the triplet loss method Hoffer and Ailon [2014]. As demonstrated in Figure 3,
we feed the neural network with three types of images: anchor images, similar to the anchor images and dissimilar
images, denoted as IA, IS and ID respectively. We also define dS as the Euclidean distances between the descriptors
qA from IA and the descriptors qS from IS . The same applies for dD and the descriptors qD from ID. The loss function
is designed so that similar and dissimilar point cloud pairs are pushed close together and far apart in the derived vector
space. The parameter m is a margin distance for distinguishing between similar and dissimilar pairs. The triplet loss is
defined as follows:

Lpr(dS , dD) = ||f(IA)− f(IS)||2︸ ︷︷ ︸
dS

− ||f(IA)− f(ID)||2︸ ︷︷ ︸
dD

+m (2)

Figure 3: The Siamese network consists of three convolutional layers followed by max pooling and then two fully
connected layers, as proposed in Schaupp et al. [2019]. The number of filters and the kernel size have been adjusted to
the considered testing environments and sensor utilized, and in addition we have an extra classifying module that boosts
the descriptor extraction process.
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The orientation estimation loss Lθ is a regression loss function that is computed based on the orientation estimation
module’s output yyaw and the ground truth δθgt. For predicting the orientation discrepancy, we only make use of the
orientation dependent vectors wA and wS . The orientation loss is defined as:

Lθ(yyaw, δθgt) =
1

2

(
(yyaw,0 − cos (δθgt))

2 + (yyaw,1 − sin (δθgt))
2
)

(3)

As mentioned in Schaupp et al. [2019], by transforming the ground truth yaw angle δθgt into the Euclidean space, we
avoid the ambiguity between 0− 360◦ which could lead to false corrections during training. The last loss function we
need to define is the classification loss Lc. For this, we choose the Hinge Loss function, defined as follows.

Lc(sj , sli) =
∑
j 6=si

max (0, sj − sli + 1) (4)

Essentially, the Hinge Loss function is summing across all the incorrect classes (i 6= j) and comparing the output of the
predicted vector s returned for the j-th class label (the incorrect class) and the li-th class (the correct class).

4.3 Training the descriptors

For training all the modules of our network, we use a joint training process to achieve a good localization recall, an
accurate yaw angle estimation and a robust classification, by learning the weights of all three Neural Networks together.
For this, we combine all three loss functions, defined as L:

L = Lpr + Lθ + Lc (5)

We sample the training point cloud data and then based on the margin m and their ground truth poses, we characterize a
similar and a dissimilar to the anchor point cloud, in order to prepare the triplets for the three-tuple shared network. As
a data augmentation step, we randomly rotate the point clouds around the yaw axis, making sure that the orientation
between anchor and the similar point clouds is different while still being from a similar place. The three point clouds are
converted to the range images and then are fed to the descriptor extractor network that outputs the three corresponding
pair-vectors, (qA, wA), (qS , wS) and (qD, wD). The three place dependent vectors are used to compute the Lpr loss,
while wA and wS are passed to the orientation estimation network and the corresponding output yyaw along with δθgt
are used to compute the Lθ loss. The vector qA is also passed to the classifier, where the output s with the labels are
used to compute the Lc loss. The combined loss L is then evaluated and with the ADAM Kingma and Ba [2014]
learning optimizer the weights are updated.

5 Experiments and Results

In this section, we will go through the experimental results, starting from evaluating the performance of the Neural
Network architecture, as well as comparing it to its base version. Then we will further evaluate the complete proposed
framework and compare it to the existing ROS available solutions. All experiments are carried out in real-world settings
with a focus on subterranean environments.

5.1 Neural Network evaluation

5.2 Datasets

For the training and evaluation process, we use three dataset collections. The first dataset collection Koval et al. [2022a]
contains recordings from an underground tunnel located in Luleå, Sweden, as seen on Figure 4. For this area, we have
recordings from two different robotic platforms. The first is with Spot from Boston Dynamics Dynamics and Robotics,
equipped with an autonomy package Koval et al. [2022b], that includes the Velodyne VLP16 PuckLite 3D LiDAR. The
second robotic platform is a custom-built quadrotor Lindqvist et al. [2021] and is equipped with the same 3D LiDAR
and on-board computer as Spot. It is important to mention that even though both platforms have similar sensors, the
acquired data may differ due to movement noise, dust and accuracy of the IMU, as one is a ground quadruped robot and
the other is a flying robot. The main difference can be seen on the registered point clouds, as well as the generated
range images, since they are operating in different heights and with different form of vibration due to walking or flying.
The second dataset collection, is from a real underground mining facility. Unlike the first dataset collection, this one
features larger tunnels, up to 10 meters wide, with multiple junctions and a featureless environment. The third and last
dataset collection is from the same underground tunnel, as the first one, but from a different passage. This environment
offers a more narrow and corridor-like environment. From all datasets, we make use of the 3D LiDAR scans and the
odometry data in order to train our models. The labels for training the junction detection module were hand-crafted on
all datasets.
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Map A. Map B.
Map C.

Figure 4: From map A, only the recordings from the upper branch are used for training, while the rest are used for the
evaluation. Map B and C are only utilized for evaluation.

5.3 Data sampling and training process

As mentioned in Section 4, the neural network is based on the triplet network architecture and therefore requires
sampling three tuples of anchor, positive and negative pairs. We consider two point clouds as similar, if their ground-
truth poses, defined as p, are within 3 meters, |pA − pS | ≤ 3. For the negative pair, we first randomly sample point
clouds out of the 3 meters radius, |pA − pD| ≥ 3, and then on a later stage we sample them within a 3 − 6 meters
radius, 3 ≤ |pA − pD| ≤ 6, around the anchor. This is known as the hard-negative mining strategy Bucher et al. [2016],
which provides a boost in the network performance as it utilizes harder to distinguish triplets in the advanced phase
of convergence. As we are working with limited datasets from the subterranean environments, we choose to train
the neural network with data collected from only the first dataset collection. For the training process of the classifier,
it is important to have a balanced dataset. Natively, the dataset will be biased towards straight corridors due to the
environment and therefore, we first train our neural network with the complete dataset without the classifying module.
Then we sample the initial dataset in a way that it is balanced among the three classes; a) straight corridor, b) junction,
and c) turn, and perform additional training with the classifying module enabled. Furthermore, because it is hard to
determine when a junction starts and ends, we make use of the regularization technique of label smoothing Goodfellow
et al. [2016], Müller et al. [2019].

labelsnew = labelsold · (1− a) +
a

N
(6)

Label smoothing helps us tackle the problem of overfitting and overconfidence of the classifier. By applying soft labels,
as calculated in Equation 6, instead of the hard 0 and 1, we ultimately get a lower loss when there is an incorrect
prediction and subsequently, our model will penalize and learn incorrectly by a slightly less degree. The hyperparameter
a determines the amount of smoothing and N is the number of classes.

5.4 Place recognition results

An advantage of frameworks like Schaupp et al. [2019] over the other discussed re-localization frameworks, is that they
offer the top-k candidates for the place recognition problem. As seen on Figure 5 and in Table 1, the localization recall
results show that 3DEG outperforms the OREOS in all scenarios, while in some cases the base model performs better
than the one with the extra classifying module. The recall percentage is higher on the first map due to being the map
that we used part of to train the neural networks. In addition, we notice that for the second map, that contains the most

Figure 5: Comparison of the performance of the proposed framework 3DEG, our implementation of OREOS, as
described by Schaupp et al., and our implementation of OREOS but with adjusted network parameters as seen on
Figure 3, denoted as OREOS∗.
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junctions, the junction detection module provides a significant boost on the top-1, with more than 10%. The results of
Table 1, for the first two rows, do not include the ICP refinement. It demonstrates the mean error of the yaw discrepancy
estimation before the refinement, between the robot’s frame and the chosen submap frame. From our experience, if two
point clouds have a high rotational discrepancy (more than 15o-25o), ICP fails to align them properly. On the other
hand, after the yaw estimation and the initial pose estimation performed by our framework, the yaw discrepancy will
be less than 20o and therefore the ICP can align them successfully. As expected, there is no major difference in the
performance of the yaw estimation, with the mean and standard deviation matching that of OREOS.

Map A Map B Map C
METHOD 3DEG OREOS∗ OREOS 3DEG OREOS∗ OREOS 3DEG OREOS∗ OREOS

MEAN (deg) 14.98 13.53 14.47 14.72 15.22 15.38 17.44 16.45 16.59
STD (deg) 22.34 23.14 19.41 19.87 20.63 19.60 21.49 21.90 22.18
MEAN (m) 0.23 - - 0.25 - - 0.28 - -

STD (m) 0.12 - - 0.17 - - 0.19 - -
RECALL (%) 92.4 - - 89.1 - - 91.5 - -

Table 1: Comparison of the mean absolute error and the standard deviation in degrees for the yaw estimation, the recall
percentage of the classifier and the mean and standard deviation in meters for the final estimated pose.

Moreover, we present the mean error of the final estimated pose from the ground truth and the standard deviation. The
results for each map arose from running the relocalization process as the robot explores the map, for approximately
every meter traveled. In Table 1, we only present them for 3DEG since the final estimation is performed by the ICP
registration.

5.5 Global re-localization results

A part of our contribution is that the proposed framework is a complete global re-localization package that works
with a given 3D point cloud map and a trajectory, by utilizing a place recognition framework, and thus we evaluate
its performance against the available re-localization ROS packages, mentioned in Section 2. In Table 2, we present
the time that each package needs to re-localize, as well as the CPU load and the VRAM usage. The BBS engine
from the hdl_global_localization was not able to correctly re-localize in any of the tested places, and consequently
was not included in the table. For the FPFH+RANSAC engine, both methods of DIRECT1 and DIRECT7 were
tested, and we have included only the fastest one. Even though we noticed higher re-localization times and memory
usage than LIO-SAM_based_re-localization and FAST-LIO_localization, it is worth noting that the biggest delay in
our pipeline is the final ICP registration for refining the pose, which can be replaced with other faster registration
methods like Fast-ICP Zhang et al. [2021] or TEASER++ Yang et al. [2021]. Throughout our experiments, only
FAST-LIO_localization was able to keep a robust re-localization performance and that only after a very precise initial
guess, something that is not required by the proposed 3DEG framework.

Starting long corridor Lower corridor
METHOD FPFH+RANSAC LIO-SAM FAST-LIO 3DEG FPFH+RANSAC LIO-SAM FAST-LIO 3DEG
TIME (sec) 2.61+22.99 0.501 0.229 1.331 - - 0.205 1.212
CPU (%) 83.5 13.4 14.5 19.7 - - 9.3 15.3

VRAM (GiB) 1.87 1.96 4.01 5.00 - - 4.01 5.00
MEAN (m) 0.64 0.44 0.35 0.30 - - 0.37 0.28

1st junction 2nd junction
METHOD FPFH+RANSAC LIO-SAM FAST-LIO 3DEG FPFH+RANSAC LIO-SAM FAST-LIO 3DEG
TIME (sec) 1.26+24.61 1.018 0.164 1.294 12.62+23.22 0.552 0.132 1.113
CPU (%) 92.1 14.8 15.9 13.6 86.9 14.2 15.5 14.5

VRAM (GiB) 1.87 1.96 4.01 5.00 1.87 1.96 4.01 5.00
MEAN (m) 0.60 0.35 0.32 0.23 0.62 0.39 0.36 0.24

Table 2: Experimental evaluation of the available re-localization packages, from Map A of Figure 4, with comparison
of the average computational time, CPU load, memory usage and mean error.
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6 Limitations

Nevertheless, our approach still has limitations. Working in subterranean environments, where the presence of dirt
and dust is directly translated into noise, significantly affects the low-resolution VLP16 scans. This results in the
degradation of the resolution of the generated range images, making it hard to train the descriptors. Another limitation
is the currently used registration method, which can either fail to refine the pose or have a high time and computational
cost, especially if the distance threshold is not chosen properly. The angle regression is only present in the yaw angle,
providing a 4 DoF initial estimation instead of 6 DoF. To accommodate a different type of environment, re-training is
needed with a new classifier, better capturing the features of that environment. Last but not least, as a future step we are
planning to better optimize the code, which for the moment is not optimal and highly affects the runtime and memory
usage of the algorithm.

7 Conclusions

In this article we have established the 3DEG, a novel complete global re-localization in a 3D point cloud map framework,
based on data-driven descriptors, that is able to autonomously start the process of re-localization upon the detection
of a junction in an environment. In addition to this, our proposed framework offers resiliency by providing multiple
candidates in a semi-autonomous operation, increasing the success rate for important missions like search and rescue. All
in all, this paper’s main goal is the proposal of a full relocalization pipeline suitable for challenging tunnel environments
where existing conventional place recognition only or pose estimation only methods seem to fail.
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