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A B S T R A C T

To deploy Micro Aerial Vehicles (MAVs) in real-world applications, there is a need for online methods to cope
with uncertainties in localization and external disturbances. In this article, we propose a set of novel real-time
embedded Nonlinear Model Predictive Control (NMPC) and Nonlinear Moving Horizon Estimation (NMHE)
modules for MAV based external disturbance rejection. The NMPC and NMHE are based on the dynamic
model of the MAV, thus, avoiding the need for system identification and creating specific aerodynamic models,
a benefit that results in a generic solution capable of being independent of the type of the MAVs. As it will be
presented, the NMHE estimates the external forces, while the NMPC generates thrust and attitude commands for
the low-level controller to compensate the various disturbances that could occur, such as wind gusts, tethered
payload, and varying center of gravity. The proposed method is evaluated extensively in multiple experimental
results that include the scenarios of position hold against an actuating wind-wall, adding payload, and changing
the MAV’s arm configurations.
1. Introduction

Recent technological advancements in MAVs have resulted to their
deployment in real-world applications, such as infrastructure inspec-
tion (Mansouri, Kanellakis, Fresk, Kominiak, & Nikolakopoulos, 2018),
aerial terrain mapping (Mansouri, Kanellakis, Georgoulas, et al., 2018),
underground mine inspection (Mansouri, Kanellakis, Kominiak, & Niko-
lakopoulos, 2020; Mansouri, Karvelis, Kanellakis, Kominiak, & Niko-
lakopoulos, 2019), search-and-rescue missions (Sampedro et al., 2018),
physical interaction with environment (Wuthier et al., 2016), aerial
payload and transportation (Pereira & Dimarogonas, 2019). In these
applications, undesired disturbances, such as wind gusts, turbulences,
or external forces in interaction with the environment are inevitable.
In addition, the lack of consideration for these external disturbances
from the MAV’s control schemes affect the overall mission performance
and results in an increased risk of collision and overall failure of the
mission (Belcastro et al., 2017).

In an attempt to robustify Micro Aerial Vehicles (MAVs) against
unwanted external disturbances, this article proposes a novel online
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embedded Nonlinear Moving Horizon Estimation (NMHE) and Non-
linear Model Predictive Control (NMPC) frameworks. The proposed
method can estimate the external disturbances while considering the
nonlinear dynamics of the MAV, without requiring the platform’s
system identification. Furthermore, the NMHE estimates the external
forces, without relying on external sensors installed either onboard
the aerial platform or on the environment, such as weather station
measurements or force sensors. Contrary, our method feeds the esti-
mated forces to an enhanced position NMPC controller that provides
disturbance-compensated thrust and attitude commands to the low-
level controller, which regulates the platform’s motor commands. In
the proposed framework, the NMHE and NMPC optimization problems
are solved online by the utilization of Proximal Averaged Newton-type
method for Optimal Control (PANOC) (Sathya et al., 2018; Sopasakis,
Fresk, & Patrinos, 2020) that is a fast solver for nonlinear optimal
control problems and guarantees real-time performance, a key compo-
nent for embedded applications. Finally, both developed modules are
evaluated in different experimental scenarios with different platforms,
while none of the experiments result in any collision.
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Fig. 1. Block diagram of the proposed NMPC and NMHE framework. A high-level controller or mission planner provides the reference, and the NMPC generates the related thrust
and attitude commands based on the state estimates and external forces. Lastly, the low-level controller generates the motor commands for the MAV.
Fig. 2. MAV with the attached body fixed frame B and inertial frame E.

1.1. Background & motivation

The majority of research studies focus on improving the flight
performance of a MAV by reckoning external forces and wind velocity
to enhance the state estimates and compensate for any disturbances. A
common approach to acquiring wind velocity is to utilize sensors, such
as anemometers or airspeed sensors that can measure the surrounding
environmental conditions (Hollenbeck, Nunez, Christensen, & Chen,
2018; Wolf et al., 2017). However, the physical sensors are sensitive
to disturbances generated from turbulence generated by the MAV’s
propellers in the form of corrupting noise. In contrast, the installation
of extra physical components increases the platform’s overall weight
with a direct reduction of the corresponding flight time.

In the related literature, many studies consider the problem of
wind estimation based on on-board sensor suites, such as Inertial
Measurement Unit (IMU) and Global Positioning System (GPS). As a
characteristic example, the authors in Cho, Kim, Lee, and Kee (2011)
proposed an Extended Kalman Filter (EKF) with a GPS and pitot tube
to estimate the wind speed and direction. In Neumann and Bartholmai
(2015) the authors utilized the already available MAV’s sensors, like
the IMU and the GPS, to acquire estimates of the wind state. In contrast
to the previous approaches, the proposed novel methodology estimates
the speed and direction of the wind, based on the on-board sensors
and global information from GPS, while the overall performance of the
method is evaluated in a wind tunnel and during extended field tests.
Nevertheless, both methods rely on the body and global velocities for
obtaining wind velocity equations.

In the related literature, many studies consider the problem of wind
estimation based on on-board sensor suites, such as IMU and GPS. As
a characteristic example, the authors in Cho et al. (2011) proposed
an EKF with a GPS and pitot tube to estimate the wind speed and
direction. In Neumann and Bartholmai (2015) the authors utilized the
already available MAV’s sensors, like the IMU and the GPS, to acquire
estimates of the wind state. In contrast to the previous approaches, the
proposed novel methodology estimates the speed and direction of the
wind, based on the on-board sensors and global information from GPS,
2

while the overall performance of the method is evaluated in a wind
tunnel and during extended field tests. Nevertheless, both methods rely
on the body and global velocities for obtaining wind velocity equations.

Lately, NMHE methods are also getting more attention (Haseltine
& Rawlings, 2005) for their ability to estimate complex nonlinear
dynamic models while they can handle inequality constraints. In Wenz
and Johansen (2017), the authors proposed a wind estimation frame-
work based on the kinematic model via Moving Horizon Estimation
(MHE). The method relies on IMU, pitot-static tube, and GPS that
limits the usage of that method in GPS denied environments, like
subterranean environments. In general, there have been few works that
study the use of MHE for target tracking of MAV, like in Quintero,
Copp, and Hespanha (2015) that proposed a MHE based on dynamic
of the MAV for target tracking, while the target has a constant velocity
or it became evasive, while the method was validated through simu-
lations. However, the problem formulation is different from the wind
estimation, and the target tracking is vision-based and depends on pixel
coordinates.

In Hentzen, Stastny, Siegwart, and Brockers (2019), an EKF and
an Unscented Kalman Filter (UKF) disturbance estimator is tested for
the position control and disturbance rejection of a multirotor. The per-
formance of this framework is evaluated under wind-wall and ground
effect experiments. The external forces are modeled as random Gaus-
sian walk and included in the MAV dynamics, while the position control
lacks tuning discussion and adaptive weight tuning parameters. To
compensate for rotor failures in-flight, the authors of Sun and de Visser
(2019) developed a parametric model of the residual forces, while the
developed model has been tested under the effect of rotor failures.
In Kan et al. (2019) the authors presented a polynomial methodology
for analyzing the ground effect of MAV and the produced thrust. In Ko-
cer, Tiryaki, Pratama, Tjahjowidodo, and Seet (2019), to compensate
for the turbulence effects, while a MAV flying in close proximity to the
ceiling, the external forces were modeled as constant and estimated
using a MHE, while in the sequel, the estimated forces were added
as augmented states in the dynamics of the system. It should also be
noted at this point that all the studies above did not provide a related
discussion about compensating for the center of gravity variations or
additive payload, while Table 1 provides an overview of state-of-art on
external force estimation and rejection.

In contrast to the studies in Table 1, it will be presented in the
sequel that our method outperforms for external forces generated from
various sources and for different platforms. The main limitation of
all the studies, including this one, is reliable odometry information.
Thus all of these approaches were tested with the utilization of a
Motion Capture (Mo-Cap) system. In addition, we show successful
estimation and good disturbance rejection in simulation when the states
are corrupted by extreme noise, which would be the equivalent of poor
odometry information.

1.2. Contributions

The first contribution stems from the formulation of the NMHE and
the NMPC modules. The developed NMHE reckons external disturbance
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Table 1
State-of-art external disturbance estimation and rejection.

References Method Sensors Evaluation Computation time Pros/Cons

(Hentzen et al., 2019) NMPC + EKF
NMPC + UKF

IMU
Requires odometry High Power Fan

NMPC 4ms
EKF 8ms
UKF 20ms

Rely only in position and
orientation measurements.

(Kan et al., 2019) Data-driven
polynomial models

IMU
Requires odometry

Flights in close
proximity to ground
in Lab environment

Models are
designed offline.
Not available

Only for overcoming ground
effect during near ground
flights

(Sun & de Visser, 2019) Parametric force
and moment models

IMU
Requires odometry

Large scale wind
tunnel

Identification is
completed offline.
Not available

Requires system identification,
thus data collection is
required prior to the design of
the controller.

(Kocer et al., 2019) NMPC + NMHE IMU
Requires odometry

Flights in close
proximity to ceiling
in lab environment

NMPC 1.8 ms
NMHE 3.4 ms

Compensates for vertical
forces in close ceiling flights
Fig. 3. Schematic illustrating the effect of the external forces on the MAV body frame axes. The 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 results to the displacement of the MAV in the 𝑥, 𝑦, 𝑧 body axes,
respectively.
forces, while the NMPC compensates for these external disturbances
through properly adjusted thrust and attitude commands. The overall
proposed framework is solved by PANOC, which guarantees real-time
performance and it is suitable for embedded computers. Moreover, the
proposed methodology compensates for external disturbances, indepen-
dent of their source or without the need for additional on-board or
environmental sensorial information.

The second contribution is the general formulation of the NMPC
and NMHE, which makes them suitable for any MAV platform and
independent of the aerodynamic model and without relying on system
identification techniques. In addition, in the proposed formulation,
there are no modifications on the MAV’s low-level controller, while
the position NMPC controller compensates for the estimated external
forces.

The third and final contribution stems from the extensive evaluation
of the proposed method in four experimental scenarios. Initially, while
trying to maintain position, the platform is subject to strong winds
reaching up to 7.5 [m/s] generated from a wind tunnel fan. In the
second scenario, the MAV is commanded to hold the position, while
the wind is created from a wind-wall that is able to produce winds of
variable velocity, and the platform is tested in the range of 0 [m/s] to
12 [m/s]. In the third scenario, the MAV is evaluated for compensating
the effect of a pendulum during flight. In this case, a tethered payload is
let to swing under the platform, resulting in the application of varying
forces in terms of amplitude and frequency. The NMHE and NMPC
modules estimate and compensate, respectively. In the final scenario,
the overall framework is experimentally evaluated for compensating
the center of gravity and other aerodynamic effects of a re-configurable
MAV subject to in-flight structural re-formations. The re-configurable
MAV can fold its arms individually around its main body resulting even
in non-symmetric morphology (Papadimitriou, Mansouri, Kanellakis, &
Nikolakopoulos, 2021). In this case, the low-level controller of the re-
configurable MAV does not account for these dynamic variations. Thus
the NMHE estimates them as forces that are compensated through the
NMPC module.

The following link https://youtu.be/u6gQuL-oqWY provides a video
summary of the experimental evaluation.
3

1.3. Outline

The rest of this article is structured as follows. Initially, the utilized
notations are introduced in Section 2, while, the MAV dynamics are
presented in Section 3. The formulation of the NMPC and the NMHE
are presented in Sections 4 and 5, respectively. Section 6 presents the
experimental set-ups, tuning parameters, and the extensive simulation
and experimental evaluation of the proposed framework. Finally, the
concluding remarks are given in Section 7 summarizing our findings
while providing related future research directions that could further
improve the current novel established framework

2. Notation and preliminaries

A vector in R𝑛 is predetermined as a column vector in R𝑛×1. The
identity matrix in R𝑛×𝑛 is denoted by 𝐈𝑛. The ‖ ⋅ ‖ represents the norm
two for vectors. The state and input vectors in the NMPC formulation
are 𝒙 and 𝒖, respectively. The estimated state and the force vector are
denoted by 𝒙̂ and 𝒇 , respectively, while the augmented state for the
NMHE is 𝒙̄ = [𝒙,𝒇 ]⊤. The position vector is 𝒑 and the linear velocities
vector is 𝒗, while 𝜙 and 𝜃 are the roll and pitch angles of the platform.
Fig. 1 depicts the block diagram of the proposed structure with the
high-level NMPC controller, the NMHE as the state and external force
estimator and the low-level controller with the MAV in the loop.

The NMPC module (presented in Section 4) generates the control
actions 𝒖 for navigating to the reference waypoint 𝒙𝑟, based on the
estimated states 𝒙̂ and the estimated external forces 𝒇 from the NMHE
(presented in Section 5). For tracking the desired roll and pitch angles,
as well as to regulate the altitude and heading of the MAV a low-level
controller is incorporated. By utilizing the data from the IMU of the
flight controller, the resulting feedback law of the low-level control is
in the form of a PD-controller that generates thrust 𝑇 and torques 𝜏𝑥, 𝜏𝑦,
and 𝜏𝑧. Torques and thrust commands are converted properly in the
sequel to motor commands based on the platform requirements 𝒏 ∈ 𝑅𝑚,
where 𝑚 is the number of motors of the platform (Jackson, Ellingson,
& McLain, 2016).

https://youtu.be/u6gQuL-oqWY
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3. MAV dynamics

The MAV is considered as a six Degree of Freedom (DoF) object with
a Body-Fixed Frame B attached and the inertial frame E, as depicted in
Fig. 2. The MAV is modeled by the position of the center of mass in the
inertia frame and the orientation of the body around each axes with
respect to the inertial frame (Kamel, Stastny, Alexis, & Siegwart, 2017;
Mansouri, Kanellakis, Lindqvist, et al., 2020). The MAV dynamics are
defined in the body frame and modeled by (1) as:

𝒑̇(𝑡) = 𝒗(𝑡) (1a)

𝒗̇(𝑡) = 𝑹𝑥,𝑦(𝜃, 𝜙)
⎡
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𝒗(𝑡) + 𝒇 (𝑡), (1b)

𝜙̇(𝑡) = 1∕𝜏𝜙(𝐾𝜙𝜙𝑑 (𝑡) − 𝜙(𝑡)), (1c)

𝜃̇(𝑡) = 1∕𝜏𝜃(𝐾𝜃𝜃𝑑 (𝑡) − 𝜃(𝑡)), (1d)

where 𝒑 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧]⊤ ∈ R3 is the position, 𝒗 = [𝑣𝑥, 𝑣𝑦, 𝑣𝑧]⊤ ∈ R3 is
the vector of linear velocities, 𝒇 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]⊤ ∈ R3 is the external
forces align each axis of the MAV, 𝜙 ∈ R ∩ [−𝜋, 𝜋] and 𝜃 ∈ R ∩ [−𝜋, 𝜋]
are the roll and pitch angles, and 𝑹𝑥,𝑦 is the rotation matrix about
the 𝑥 and 𝑦 axes, 𝑇 ∈ R+ is the mass-normalized thrust, 𝑔 is the
gravitational acceleration, 𝐴𝑥, 𝐴𝑦, and 𝐴𝑧 ∈ R are the normalized mass
drag coefficients. The low-level control system is approximated by first-
order dynamics driven by the reference pitch and roll angles 𝜙𝑑 and 𝜃𝑑
with gains of 𝐾𝜙, 𝐾𝜃 ∈ R+, and time constants of 𝜏𝜙 ∈ R+, 𝜏𝜃 ∈ R+.

4. Nonlinear model predictive control

The objective of the NMPC scheme is to track the reference trajec-
tory 𝒙𝑟 = [𝒑, 𝒗, 𝜙, 𝜃]⊤ from the operator or a mission planner, while
considering the estimated external forces from the NMHE and generat-
ing thrust 𝑇 and attitude commands 𝜙𝑑 , 𝜃𝑑 for the low-level controller.
The NMPC is solved online by the utilization of PANOC (Sathya et al.,
2018) in order to guarantee overall real-time performance.

The states of the non-linear dynamics of the MAV according to
Eq. (1), can be presented as 𝒙 = [𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜙, 𝜃]⊤, the estimated
states 𝒙̂ = [𝑝̂𝑥, 𝑝̂𝑦, 𝑝̂𝑧, 𝑣̂𝑥, 𝑣̂𝑦, 𝑣̂𝑧, 𝜙̂, 𝜃̂]⊤, while 𝒇 = [𝑓𝑥, 𝑓𝑦, 𝑓𝑧]⊤ are the
estimated external forces from the NMHE. Finally, the control input is
defined as 𝒖 = [𝑇 , 𝜙𝑑 , 𝜃𝑑 ]⊤. Based on the Euler method for a sampling
time 𝑇𝑠, the discrete-time dynamical system is obtained as 𝒙𝑘+1 =
𝑓 (𝒙𝑘, 𝒖𝑘).

The NMPC solves at each instant 𝑘 a finite horizon problem with
a prediction horizon 𝑁 . The states and the control actions in 𝑘 + 𝑗
steps ahead of the current time step 𝑘 are indicated as 𝒙𝑘+𝑗|𝑘 and 𝒖𝑘+𝑗∣𝑘
correspondingly. At each time step, an optimal sequence of control
actions 𝒖⋆𝑘|𝑘, … , 𝒖⋆𝑘+𝑁−1|𝑘 are obtained by the NMPC based on the
reference and current state of the system, while the first control action
𝒖⋆𝑘|𝑘 is applied to the low-level controller by utilizing a zero-order hold
element. Thus, at each instant, the 𝒖(𝑡) = 𝒖⋆𝑘|𝑘 for 𝑡 ∈ [𝑘𝑇𝑠, (𝑘+1)𝑇𝑠] is fed
to the low-level controller. The following finite horizon cost function is
introduced for the proposed NMPC:

𝐽 =
𝑁−1
∑

𝑗=0
‖𝒙𝑘+𝑗+1|𝑘 − 𝒙𝑟‖2𝑸𝑥
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

waypoint error

+ ‖𝒖𝑘+𝑗+1|𝑘 − 𝒖𝑟‖2𝑸𝑢
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

actuation

+ ‖𝒖𝑘+𝑗|𝑘 − 𝒖𝑘+𝑗−1|𝑘‖2𝑸𝛥𝑢
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

smoothness cost

. (2)

As defined on the first term of the objective function, the deviation
of the current state 𝒙𝑘 from the desired state 𝒙𝑟 is penalized for the
accurate tracking of the reference. The second term is the hovering
term, where 𝒖𝑟𝑒𝑓 is [𝑔, 0, 0]⊤, which is the hover thrust with hori-
zontal angles. The last term of the objective function penalizes the
aggressiveness of the obtained control actions. Additionally, 𝑸𝑥 ∈ R8×8,
𝑸𝑢 ∈ R3×3, 𝑸𝛥𝑢 ∈ R3×3 are the weights for each term of the objective
function, which reflects their relative importance of them.
4

To limit the control actions of the NMPC within a range, the control
input 𝒖 is bounded as it follows:

0 ≤𝑇 ≤ 𝑇𝑚𝑎𝑥 (3a)

𝜙𝑚𝑖𝑛 ≤𝜙𝑑 ≤ 𝜙𝑚𝑎𝑥 (3b)

𝜃𝑚𝑖𝑛 ≤𝜃𝑑 ≤ 𝜃𝑚𝑎𝑥 (3c)

The constraints are implemented to avoid aggressive behavior during
maneuvers and represent the desired physical constraints of the plat-
form. Based on the previous definitions, the following optimization
problem is defined in (4).

min
{𝑢𝑘+𝑗∣𝑘}𝑁−1

𝑗=0

𝐽 (4a)

s.t. 𝒙𝑘+𝑗+1∣𝑘 = 𝑓 (𝒙𝑘+𝑗∣𝑘, 𝒖𝑘+𝑗∣𝑘), (4b)

Constraints (3a), (3b), (3c). (4c)

5. Nonlinear moving horizon estimation

The proposed NMHE (Rao, Rawlings, & Mayne, 2003) estimates the
system’s states and external forces applied to the MAV. Fig. 3 depicts
the effect of the external forces on the body frame of the MAV. The
body frame forces 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 result in the position drift of the MAV in
the 𝑥, 𝑦, 𝑧 body axes correspondingly.

For the NMHE formulation, the (1) is presented in the discrete time
form as:

𝒙̄𝑘+1 =  (𝒙̄𝑘, 𝒖𝑘) +𝒘𝑘, (5a)

𝒚𝑘 = (𝒙̄𝑘) +𝜦𝑘, (5b)

where, 𝒙̄ = [𝒙,𝒇 ]⊤,  ∶ R𝑛𝑠 × R𝑛𝑢 → R𝑛𝑠 is a nonlinear function,
 ∶ R𝑛𝑠 → R𝑛𝑚 is a linear vector function of the states 𝒙̄, and 𝒚 =
[𝑥, 𝑦, 𝑧, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝜙, 𝜃]⊤ is the measured output. Furthermore, 𝑛𝑠, 𝑛𝑢, and
𝑛𝑚 are the number of states, inputs and measurements, respectively,
𝜦𝑘 ∈ R𝑛𝑚 and 𝒘𝑘 ∈ R𝑛𝑠 represent the measurement noise and the
model disturbances correspondingly. It should be highlighted that in
the NMHE formulation the external forces are considered in the state
space of the dynamic model, thus in the NMHE formulation, 𝒇 is
considered as an unmeasured state, while in the NMPC formulation,
𝒇 is variable for the prediction horizon, which is updated based on
the NMHE estimations. The external force 𝒇 changes over the time,
however in each estimation window it is assumed that the external
force is static (𝒇̇ = 0).

The process disturbance 𝒘𝑘, the measurement noise 𝜦𝑘, and the
initial Probability Density Function (PDF) of the state vector are un-
known and it is assumed that they are randomly distributed according
to the Gaussian PDF with covariance matrices 𝑸 ∈ R𝑛𝑠×𝑛𝑠 , 𝜴 ∈ R𝑛𝑚×𝑛𝑚 ,
and 𝜳 ∈ R𝑛𝑠×𝑛𝑠 , respectively (Ungarala, 2009). Furthermore, the initial
condition 𝒙̃0 is assumed to be known. In a stochastic state estimation,
such as NMHE, it is assumed that the probability distribution of the
measurement noise 𝜦 and the state disturbance 𝒘𝑘 are known. Based
on that information, the estimated states are obtained by calculating
the maximum of PDF (Rao & Rawlings, 2000). Furthermore, it is
assumed that the measurement noise and the state disturbances have
normal (or Gaussian) distribution. The Gaussian distribution is the most
common distribution for the noise since only the mean value and the
standard deviation of the noise are required. Additionally, according
to the central limit theorem, the sum of infinity large Independent
Identically Distributed (IID) random variables will converge to the
Gaussian (normal) distribution (Rojas, 2010). It should be noted that
in the case of a nonlinear system model, the distribution of variables
will not always stay Gaussian (López-Negrete, Patwardhan, & Biegler,
2011). Therefore, updating the covariance matrix can lead to a better
distribution of data at each iteration, thus as future work, an EKF or a
particle filter could be utilized for updating the covariance matrix.
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Based on the information about random noises and a set of available
noisy measurements 𝒀 = {𝒚𝑗 ∶ 𝑗 = 1,… , 𝑁𝑒}, the estimated states of the
system 𝑿̄ = {𝒙̄𝑗 ∶ 𝑗 = 0,… , 𝑁𝑒} are obtained by solving the following
optimization problem in (6), while the 𝑁𝑒 is the length of the fixed
horizon window. Moreover, 𝒙̄𝑘−𝑗|𝑘 and 𝒚𝑘−𝑗∣𝑘 are the 𝑘−𝑗 previous state
and measurements form the current time 𝑘.

min
𝒙̄(𝑘−𝑁𝑒 ∣𝑘) ,𝑾

(𝑘−1∣𝑘)
(𝑘−𝑁𝑒 ∣𝑘)

𝐽 (𝑘) (6a)

s.t. 𝒙̄𝑖+1|𝑘 =  (𝒙̄𝑖|𝑘, 𝒖𝑖|𝑘) +𝒘𝑖|𝑘 (6b)

𝒚𝑖|𝑘 = (𝒙̄𝑖|𝑘) +𝜦𝐢|𝐤 𝑖 = {𝑘 −𝑁𝑒,… 𝑘 − 1} (6c)

𝒘𝑘 ∈ W𝑘, 𝜦𝑘 ∈ ˜𝑘, 𝒙̄𝑘 ∈ X𝑘 (6d)

where,

𝐽 (𝑘) = ‖𝒙̄𝑘−𝑁𝑒|𝑘 − 𝒙̃𝑘−𝑁𝑒|𝑘‖
2
𝜳

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
arrival cost

+
𝑖=𝑘
∑

𝑖=𝑘−𝑁𝑒

‖𝒚𝑖|𝑘 −(𝒙̄𝑖|𝑘)‖2𝜴
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

stage cost

+
𝑖=𝑘−1
∑

𝑖=𝑘−𝑁𝑒

‖𝒙̄𝑖+1|𝑘 − 𝑓 (𝒙̄𝑖|𝑘, 𝒖𝑖|𝑘)‖2𝑸
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

stage cost

(7)

In (6) 𝑾 (𝑘−1∣𝑘)
(𝑘−𝑁𝑒 ∣𝑘)

= 𝑐𝑜𝑙(𝒘(𝑘−𝑁𝑒 ∣𝑘),… ,𝒘(𝑘−1∣𝑘)) is the estimated process
disturbance from time 𝑘 − 𝑁𝑒 up to 𝑘 − 1, which is estimated at the
time 𝑘 and the estimation horizon is defined with a fixed window of
size 𝑁𝑒 ∈ Z+.

The first term of the objective function in (7) is the arrival cost
weighted by 𝜳 , which describes the uncertainty in the initial state
at the beginning of the horizon considering the error between the
observation model and the predicted initial state 𝒙̃(𝑘 − 𝑁𝑒 ∣ 𝑘). In
general, there are different approaches to transfer the arrival cost
at each time (Ungarala, 2009), while in this work, the smoothing
approach is used that only uses one time-step before the window to
approximate the arrival cost. The second and third terms are called
stage costs. The ‖𝒚𝑖|𝑘 − (𝒙̄𝑖|𝑘)‖2, weighted by 𝜴, is the bias between
the measured output and the estimated state. The ‖𝒙̄𝑖+1|𝑘−𝑓 (𝒙̄𝑖|𝑘, 𝒖𝑖|𝑘)‖,
weighted by 𝑸, is the estimated model disturbance.

At every instant 𝑘, a finite-horizon optimal problem with horizon
window of 𝑁𝑒 is solved and the corresponding estimated states and
external forces sequence of 𝒙̄⋆𝑘−𝑁𝑒|𝑘

,… 𝒙̄⋆𝑘−1|𝑘 are obtained. The final
estimated state 𝒙̄⋆𝑘−1|𝑘 is fed to the controller.

5.1. Embedded optimization

The proposed NMPC (4) and NMHE (6) frameworks, can be solved
with PANOC with single shooting formulation (Sathya et al., 2018).
The gradient of the objective functions is obtained from the automatic
differentiation (Dunn & Bertsekas, 1989) in CasADi (Andersson, Gillis,
Horn, Rawlings, & Diehl, 2019). The Optimization Engine (OpEn) is a
real-time embedded nonconvex optimization that combines the PANOC
with the penalty method to compute approximate stationary points
of nonconvex problems, while the study in Sopasakis et al. (2020)
provides an extensive overview and comparison of the OpEn with
other optimization methods such as Interior Point OPTimizer (IPOPT),
Sequential Least Squares Programming (SLSQP).

PANOC provides high accuracy and fast convergence solutions due
to their numerical properties. However, PANOC cannot guarantee a
global solution to the problem. As a future work, meta-heuristic op-
timization algorithm (Yang, 2011) such as particle swarm optimiza-
tion (Abualigah et al., 2019; Kennedy, Kennedy, Eberhart, & Shi, 2001)
or genetic algorithm (Davis, 1991) can be considered for global optimal
solutions. These algorithms usually lead to ‘‘good enough’’ solutions,
within a reasonable amount of time. Therefore, they have attracted a
lot of attention with new algorithms proposed recently with improve-
ment in performance every day (Abualigah et al., 2021). It should be
highlighted that in most of the cases, the computation time limits the
use of such algorithms for the fast dynamics of aerial robots.
5

6. Results

The proposed framework for estimating and compensating external
forces described in Sections 4 and 5 is evaluated under simulation and
experimentation scenarios. Initially, in order to prove the performance
but also to compare the methodology with similar methods, while the
external forces are known, a MAV model is evaluated in a simulation
environment for different estimators. Furthermore, to evaluate the use
and the application range of the proposed framework, a series of
various experimental trials are presented where the external forces are
generated by different means.

6.1. Simulation evaluation

Initially, the proposed method is evaluated in a computer based
simulation with an Intel Core i7-6600U CPU, 2.6 GHz and 8 GB RAM.
The main purpose is to evaluate the proposed architecture with noisy
measurements and known external forces. In this case, the MAV model
parameters, as defined in (1), are presented in the Table 2.

The NMPC and NMHE parameters are indicated in Tables 3 and
4, respectively. The prediction horizon 𝑁𝑝 for the NMPC and the
estimation window 𝑁𝑒 for the NMHE is 40. It should be highlighted that
in case of the NMPC the control inputs are the decision variables, while
in case of the NMHE the states and external forces 𝒙̄ are the decision
variables.

The generated noise follows a normal Gaussian distribution  (𝜇, 𝜎2)
(Peebles, 2001), while 𝜇 and 𝜎2 are the mean and variance, respec-
tively. The noise is generated separately for each term of the states,
while the position estimations suffer from higher uncertainties com-
pared to velocity estimations (Siegwart, Nourbakhsh, & Scaramuzza,
2011), since position drift is more difficult to recover when compared
to the velocity drift that can be recovered after a few time steps.
The normal Gaussian distribution, for the position is  (0, 1m) and for
he velocity estimation is  (0, 0.5m∕s). In the following simulation
esults, the MAV takes off from the ground and the 𝒙𝑟 is set to
0, 0, 5, 0, 0, 0, 0, 0]⊤. The random external forces are generated every 20 s
nd they are kept active for that interval until a new random external
orce is generated, while the overall simulation time is 240 s.

Fig. 4 shows the measured, estimated, and actual values of the
AV position in the presence of external disturbances. The NMHE

racks the actual value and reduces the noise in measurements, while

Table 2
Selected tuning parameters of the MAV model during simulations.
𝑔 𝐴𝑥 𝐴𝑦 𝐴𝑧 𝐾𝜙 𝐾𝜃 𝜏𝜙 𝜏𝜃
9.8m∕s2 0.1 0.1 0.2 1 1 0.5 s 0.5 s

Table 3
NMPC simulation weight parameters and constraints.
𝑸𝑥 𝑸𝑢 𝑸𝛥𝑢

[10, 10, 10, 5, 5, 5, 1, 1]⊤ [10, 10, 10]⊤ [20, 20, 20]⊤

𝑇 𝜙 𝜃

[0, 1] ∩ R [−0.4, 0.4] ∩ R rad [−0.4, 0.4] ∩ R rad

Table 4
NMHE simulation tuning parameters.
𝜳 𝑸 𝜴

𝐈11 𝐈8 5 × 𝐈11
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Fig. 4. Simulated position [𝑥, 𝑦, 𝑧]⊤ in meters, where the measured, real and estimated
values are shown by gray, white and black colors, respectively.

the Root Mean Square Error (RMSE) of the estimation is 0.3m for 𝑥,
𝑦, 𝑧 positions. It should be noted that the RMSE between the noisy
measurements and the actual values is 1m.

Fig. 5 depicts the body frame measured, estimated and actual veloc-
ities. A significant improvement of the estimated velocities compared to
the measured ones can be noticed. The RMSE of the estimated velocity
from the true velocity is 0.3m∕s.

Table 5
Performance comparison between the proposed NMHE framework and other state-of-art
methods.

EKF UKF NMHE

Est. external forces RMSE [N] 1.04 0.78 0.62
Reference tracking RMSE [m] 1.88 1.44 0.72
Average comp. time [ms] 8.9 22.3 5.4
Average convergence [s] 3.24 7.25 2.99

Table 6
NMPC tuning parameters and constraints for the experimental evaluation with the fan
𝑸𝑥 𝑸𝑢 𝑸𝛥𝑢

[10, 10, 10, 5, 5, 5, 1, 1]⊤ [10, 10, 10]⊤ [20, 20, 20]⊤

𝑇 𝜙 𝜃

[0, 1] ∩ R [−0.8, 0.8] ∩ R rad [−0.8, 0.8] ∩ R rad
6

Fig. 5. Simulated velocity states [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]⊤ in m/s, where the measured, real and
estimated values are shown by gray, white and black colors, respectively.

Table 7
NMHE tuning parameters for the experimental
evaluation with the fan.
𝜳 𝑸 𝜴

𝐈11 𝐈8 𝐈11

Table 8
NMPC tuning parameters and constraints for the experimental evaluation with the
wind-wall.
𝑸𝑥 𝑸𝑢 𝑸𝛥𝑢

[5, 5, 5, 5, 5, 5, 1, 1]⊤ [10, 10, 10]⊤ [20, 20, 20]⊤

𝑇 𝜙 𝜃

[0, 1] ∩ R [−0.6, 0.6] ∩ R rad [−0.6, 0.6] ∩ R rad

The proposed NMHE-NMPC framework is compared with an EKF-
based and UKF-based framework. The noises and external forces are
identical for the best comparison among all tests. In addition, for every
simulation, the same NMPC module is used to regulate the position of
the MAV based on the estimated external disturbances.

The introduced external forces vary following a step response at
20 s intervals instead of being updated gradually, which would ease
the estimation convergence. It should be highlighted that the external
forces are unmeasured states for the estimators, and they provide esti-

mates without knowledge of the actual external forces value. All three
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Fig. 6. Generated external forces [𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧]⊤ in comparison to the estimated external
forces from the NMHE, the EKF and the UKF of the simulation scenario.

methods have been tuned based on the noise properties to enhance
their estimation capabilities.

The external force estimation comparison among EKF, UKF and the
proposed NMHE method is depicted in Fig. 6. As it can be observed
the convergence time of the EKF and the NMHE is almost the same,
but in contrast, the EKF appears to be less accurate on the estimation
performance. On the other hand, the UKF appears to have accurately
estimate the forces, but the convergence is quite slow compared to
NMHE.

Fig. 7 presents the positions 𝑥, 𝑦, and 𝑧 of the MAV based on the
EKF, the UKF, and the NMHE methods. As a result of the external force
estimation performance (Fig. 6), the EKF-NMPC framework appears to
have the worst tracking behavior with a max error from the reference
point 6.7, 11.4, and 4.1m for the 𝑥, 𝑦, and 𝑧 axes, respectively. The
UKF-NMPC has slightly better performance, and the maximum drifts
reference points 4.4, 7.7, and 3.2m for the 𝑥, 𝑦, and 𝑧 axes, respectively.
Lastly, the proposed framework presents the minimum drift from the
reference point 3.3, 2.8, and 2.2m meters for the 𝑥, 𝑦, and 𝑧 axes,
respectively.

Table 5 shows a comparison between the proposed NMHE-NMPC
versus EKF-NMPC and UKF-NMPC frameworks. The NMHE presents the
lowest overall RMSE for the estimated external forces, 0.62 N, while the
UKF results to an RMSE value of 0.78 N. On the other hand, the highest
7

Fig. 7. Simulated MAV position compared to the reference point based on EKF, UKF,
and NMHE external force rejection frameworks, respectively.

overall RMSE appears for the EKF, 1.04 N. Similar results are observed
for the position RMSE values with 1.88 m 1.44 m and 0.72 m for EKF,
UKF, and NMHE, respectively. The average computation time of the
UKF is higher from the NMHE and the UKF by 16.9 ms and 13.4 ms,
respectively. Lastly, the EKF has a similar average convergence time
with the NMHE in contrast to the UKF that is slower, approximately by
4 s.

Recapping the evaluation of the proposed framework in a simulation
environment, the NMHE accurately tracks the states and successfully
estimates the generated forces. Note that any variation in the position
occurs due to the external forces, while the NMPC compensates them by
considering the estimated external force values. Increasing the control
action boundaries of the NMPC will result in better position tracking in
the presence of external forces. The mean and max computation time of
the NMHE is 5.4 ms and 8.5 ms, respectively. Moreover, the mean and
max solver time of the NMPC is 1.9 ms and 5.9 ms, respectively. The
lower computation time of the NMPC is primarily due to the smaller
number of decision variables compared to the NMHE. The NMPC has
𝑛𝑢×𝑁𝑝 decision variables, and NMHE has 𝑛𝑠×𝑁𝑝, 120, and 440 decision
variables, respectively.

6.2. Experimental evaluation

A quadcopter (Fig. 8(a)), based on the ROSflight flight controller,

is used to evaluate the proposed method. The Aaeon UP-Board is the
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Fig. 8. Experimental quadcopter platforms used for the evaluation of the proposed methodology.
Fig. 9. Photographic still of the flying arena at LTU. The fan is located in the right side while the flying MAV is located in the center of the arena.
main processing unit, incorporating an Intel Atom x5-Z8350 processor
and 4GB RAM. The operating system running on-board is the Ubuntu
Desktop 18.04, while Robot Operating System (ROS) Melodic is uti-
lized. The four different scenarios defined in the sequel to evaluate the
proposed method utilize the same platform. The second platform used
for evaluation is a re-configurable quadcopter (Fig. 8(b)). The second
platform is equipped with the same computation board and operating
system. Both aerial robots are designed and built by the Robotics &
AI Team at LTU (Kominiak, Mansouri, Kanellakis, & Nikolakopoulos,
2020).

The MAV dynamics presented in (1) are based on Euler angles,
and although this formulation is easy to implement, it suffers from the
presence of singularities (‘‘gimbal lock’’ problem), thus cannot define
certain orientations (Fresk & Nikolakopoulos, 2013). Moreover, the
flying arena has limited dimensions in both experimentation locations
(LTU and CAST). The control inputs are bounded based on the experi-
ment to avoid gimbal lock and consider safety criteria. Thus, the limit
is increased to the maximum possible value to avoid high wind gusts
while considering the arena dimensions and singularity issues.
8

In all the experimental evaluations the NMPC and NMHE sampling
time is 0.02 s and the solver uses only 10% of the CPU usage on
the Aaeon UP-Board. Link: https://youtu.be/u6gQuL-oqWY provides a
video summary of the overall experiments.

6.2.1. Evaluation with wind tunnel fan
In this first case, the method is evaluated when a fan generates the

wind gusts, while an operator control the fan speed manually. Fig. 9
depicts the flying area, the dimension of the arena is 4×4×3 m3. In all
the cases, the 𝒙𝐫 for the NMPC is set to [0, 0, 0.6, 0, 0, 0, 0, 0]⊤, while the
fan is located in the right side of the platform, which generates mainly
wind in 𝑦-axis of the MAV body frame. The Vicon Motion-capture
system is used for precise quadcopter localization in this experiment.
The NMPC and NMHE parameters in this case are presented in the
Tables 6 and 7, respectively.

Fig. 10 depicts the estimated and the measured values of the po-
sition of the MAV from the NMHE and the Mo-Cap system Vicon,
respectively. An operator increases the fan speed; however, there was

https://youtu.be/u6gQuL-oqWY
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Fig. 10. Position states [𝑥, 𝑦, 𝑧]⊤ of the experimental scenario where the wind is
enerated from a fan. The measured and estimated values are shown by gray and
lack colors, respectively.

o hardware to measure the actual power consumption of the fan.
ased on Air Velocity Anemometer, the wind speed in the arena reaches
.5 m/s. The RMSE between the real and estimated measurements is
.1m, while it is worth mentioning that the measurement noise is low
nd can be considered negligible.

Fig. 11 depicts the estimated external force for this scenario. It can
e seen that the 𝑓𝑦 has higher values in comparison to the forces in the
ther axes. This is due to the location of the fan which mainly generates
ind in the 𝑦-axis body frame of the MAV. The mean and absolute max
alue of the forces in 𝑥, 𝑦, and 𝑧 axis are (−0.12, 0.52) N, (0.3, 1.4) N, and

(−0.28, 0.48) N, respectively. The RMSE between the 𝒙 and 𝒙𝑟 is 0.2m,
0.5m, and 0.3m for 𝑥, 𝑦, and 𝑧 for axes, respectively.

Fig. 12 depicts the position of the MAV, when the NMHE module is
not used and the NMPC does not have any information of the estimated
external forces. In this case, the 𝒙𝑟 and the NMPC parameters are same
as in the previous experiment with the fan. The RMSE between position
and reference point for 𝑥, 𝑦 and 𝑧 axes is 0.5m, 0.5m, and 0.56m,
respectively, while the maximum absolute error observed to be 1.5m
n the body frame 𝑦-axis. It should be highlighted that due to the large
rror in the 𝑦-axis and the limited size of the area the maximum wind
peed for this case reaches to 1.5m∕s, which is 6m∕s less than the case
ith the NMHE module.

.2.2. Evaluation with wind generated with wind-wall
In this case, the proposed modules are evaluated in CAST laboratory
9

t the California Institute of Technology. Fig. 13 depicts the flying
Fig. 11. Estimated forces [𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧]⊤, of the experimental scenario where the wind is
generated from a fan.

arena, where the wind-wall is located on the left side and generates
wind towards 𝑥-axis of the MAV (due to the reference heading of the
platform). The wind-wall dimension is 2m and 2.1m for the width and
height, with total number of 18 fan modules. The modules can produce
a maximum wind speed of 16m∕s.

In this case, the Mo-Cap system OptiTrack is used for providing
localization information. Table 8 provides the parameters for the NMPC
and the NMHE is same as experiment with the fan in Table 7.

Fig. 14 depicts the estimated and measured position of the MAV,
while the RMSE between the measured and estimated values is 0.1m.

he waypoint 𝒙𝑟 is set to [0.5,−1.6, 2.0, 0, 0, 0, 0, 0]⊤, and the RMSE
etween the 𝒙 and 𝒙𝑟 is 0.2m, 0.18m, and 0.25m for 𝑥, 𝑦, and 𝑧 axes,

respectively.
The estimated external forces of the wind-wall are depicted in

Fig. 15. The mean and absolute max value of the forces for each axis
𝑥, 𝑦, and 𝑧 are (−1.2, 2.2) N, (−0.2, 0.9) N, and (0.2, 0.55) N, respectively.

Fig. 16 shows the power percentage of the wind-wall in the pro-
posed experiment. The operator increases the power of the wind-wall
from zero to 55%, which generates an airflow of up to 8.8m∕s. As
the wind-wall faces towards the MAV 𝑥-axis, the estimated force 𝑓𝑥
is gradually decreasing by following the same trend of the increasing
wind-wall power percentage.

Moreover, the MAV is evaluated with the use of the NMPC mod-
ule and without the NMHE module, thus the external forces are not
estimated. In this case, the 𝒙𝑟 is set to [0.5,−1.6, 1.3, 0, 0, 0, 0, 0]⊤ and
he same tuning of the NMPC is used. Fig. 17 depicts the position of
he MAV. The RMSE of the position and the waypoint for 𝑥, 𝑦 and
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Fig. 12. MAV position, while the NMHE module is disabled and the NMPC has no information of the external forces for the experimental scenario where the wind is generated
from a fan.

Fig. 13. Flying arena in CAST laboratory at the California Institute of Technology. In the left side of the illustration is the wind-wall and in the middle is the flying MAV.
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Fig. 14. Position states [𝑥, 𝑦, 𝑧]⊤ of the scenario where the wind is generated from a
ind-wall. The measured and estimated values are shown by gray and black colors,

espectively.

axes is 0.46m, 0.35m, and 0.40m respectively, while the maximum
bsolute error in 𝑥-axis is 1.58m. This is due to the generated wind
owards the 𝑥-axis of the MAV. Moreover, Fig. 18 shows the power

percentage of the wind-wall which approximately reaches up to 3.5m∕s.
From the obtained results, it is observed that the NMPC tracks the
desired waypoint with a high error when the external forces are not
estimated. In addition, for this scenario, the maximum wind speed is
approximately 2.5 times lower when compared to the previous case.

6.3. External force estimation with tethered payload

In this scenario, an external payload of 0.25 kg is tethered to the
MAV, as depicted in Fig. 19. The tether length is 0.68m, resulting in a
period of motion of 1.65 s. To ensure the stability of the MAV-pendulum
system, the NMHE and the NMPC modules frequency should be at least
be twice the maximum frequency of the system (Marks, 1991). Thus,
if the pendulum’s motion increases in speed and amplitude, the system
will eventually fall to instability. The scope of the proposed method is
to reduce the effect of the swinging load, while an alternative method
would be to augment the states of the system with the pendulum equa-
tions of motion to dampen the swinging of the pendulum (Kuře, Bušek,
Vyhlídal, & Niculescu, 2019). The same parameters as in Tables 7 and
8 are used for this experimental scenario.

In this case, the 𝒙𝑟 is set to [−0.7,−1.6, 1.5, 0, 0, 0, 0, 0]⊤ and [0.0,
−1.6, 1.5, 0, 0, 0, 0, 0]⊤, which results MAV’s hovering back and forth
11

a

Fig. 15. External force estimates [𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧]⊤, for the scenario where the wind is
generated from a wind-wall.

Fig. 16. Wind-wall power percentage for the case of the MAV subject to winds
estimated up to 8.8m∕s.

between the two setpoints and aligned with its 𝑥-axis. Fig. 20 depicts
the position and estimated position of the MAV. The RMSE between
the position and waypoint is 0.5m, 0.4m, and 0.2m for 𝑥, 𝑦 and 𝑧-axes,
espectively.

Fig. 21 presents the estimated forces on the tether experiment.
he oscillatory motion of the pendulum is evident in the estimated
orces along the 𝑥 and 𝑦 axes of the platform. Note that when the
AV is approaching the landing set-point, a positive value for 𝑓𝑧 is

stimated. That occurs as the tether payload touches the ground and
he force is omitted from the MAV. Worth highlighting that the stand-
lone NMHE is not able to stabilize the aerial platform, and there is a
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Fig. 17. Measured 𝑥, 𝑦, 𝑧 positions of the MAV, without external forces estimation and
ompensation for the scenario where the wind is generated from a wind-wall.

Fig. 18. Wind-wall power percentage for the case of the MAV subject to winds
stimated up to 3.5m∕s.

need for compensation on the low-level controller; however, the NMHE
estimation still provides collision-free navigation.

6.3.1. Evaluation with the MAV with re-configurable arms
This experiment involves a MAV with re-configurable arms to eval-

uate the performance of the external force estimation and the overall
disturbance rejection proposed method. The MAV alters its configura-
tion among H, X, Y, and T shapes based on the orientation of the arms
12

t

Table 9
NMPC tuning parameters for the evaluation with the re-configurable MAV.
𝑸𝑥 𝑸𝑢 𝑸𝛥𝑢

[5, 5, 5, 5, 5, 5, 1, 1]⊤ [10, 10, 10]⊤ [20, 20, 20]⊤

𝑇 𝜙 𝜃

[0, 1] ∩ R [−1.0, 1.0] ∩ R rad [−1.0, 1.0] ∩ R rad

as depicted in Fig. 22. The different MAV configurations have a direct
impact on the moment of inertia of the platform and for asymmetric
configurations, like Y and T, on its center of gravity (Falanga, Kleber,
Mintchev, Floreano, & Scaramuzza, 2019).

These dynamic variations drastically change the platform’s balance,
which under normal conditions would require a model-based control
to be captured to avoid the collision of the platform. In contrast to the
expectations, the same low-level control strategy, as in Section 2, has
been utilized in the case of the re-configurable quadrotor. Thus, the
low-level controller has zero adaptation to the morphology alterations.
The selected methodology emphasizes the NMHE force estimation ca-
pabilities and disturbance rejection when significant changes occur
in the platform dynamics. For the experimental evaluation the MAV
is commanded to hold position at 𝒙𝑟 = [0, 0, 0.6, 0, 0, 0, 0]⊤ and the
parameters of the NMPC in this case are presented in Table 9.

Fig. 23 depicts the position of the MAV and the estimated values.
The initial RMSE, while the platform maintains the H and X formations
for the first 35 s, stays at 0.11m, 0.13m, and 0.23m for 𝑥, 𝑦, and 𝑧-
xes, respectively. The higher altitude fluctuations occurred due to the
erodynamic effects and loss of energy among the propellers since there
s overlap between them in H -formation. When the platform alters to
he Y -formation and later on to the T -formation, the RMSE between the
osition and the waypoint is 0.7m, 0.45m, and 0.6m for 𝑥 − 𝑦 − 𝑧 axes.
he increased RMSE is expected as the asymmetry nature of those two
ormations result in a major shift of the platform’s center of gravity.

Figs. 24 and 25 present the estimated forces of the NMHE and the
enerated control commands of the NMPC. The mean and absolute
orce levels are (−0.18, 1.53) N, (−0.14, 0.48) N, and (0.06, 0.51) N for
ach axis 𝑥, 𝑦, and 𝑧. In Fig. 25 it is observed that the re-configurable
rone reaches the input constraints, which are already expanded com-
ared to the other experimental scenarios. More specifically, when
he MAV changes to the T configuration, the input 𝜃𝑑 reaches closer
o 1 rad, which is the NMPC bound for the pitch angle. It should
e highlighted that the same experiment is performed without the
MHE module, and the stand-alone NMPC could not compensate for

he arm re-configuration; thus, the experiment results in the collision
f the platform with the protection net. As already emphasized, there
s no model-based compensation for the low-level controller of the re-
onfigurable MAV. Thus the high RMSE values are expected, while the
AV avoids the collision in contrast to the scenario where the NMHE
odule is suspended.

. Concluding remarks

This article presented a novel embedded NMHE and NMPC modules
or the external force estimation and disturbance rejection of a MAV.
he proposed framework was evaluated and compared with state-of-
he-art methods in simulation under varying force levels while the
tates of the system were affected by white noise. The experimental
valuation included four different scenarios of force estimation and
isturbance rejection: (1) Wind Tunnel Fan, (2) Wind-wall, (3) tethered
ayload, and (4) MAV with re-configurable arms. For all the cases
entioned above, the results demonstrated a significantly improved
erformance between the tests where the proposed NMHE module was
nabled. More specific, for the Wind Tunnel Fan the MAV managed

o maintain its position even when the air-speed reached to 7.5 m/s,
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Fig. 19. Photographic still of the experimental scenario where the MAV has a tethered payload.
Fig. 20. Position states [𝑥, 𝑦, 𝑧]⊤ of the scenario where a payload is attached on the
MAV. The measured, estimated and reference values are shown by red, black, and
dashed gray lines, respectively.

while without external force estimation, the MAV failed to maintain its
position at the lowest fan setting. Similar performance was observed
during the evaluation under the effect of winds generated by a wind-
wall. As far as the evaluation with a tethered payload is concerned, the
13
Fig. 21. Estimated forces [𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧]⊤, for the scenario where a payload is attached on
the MAV.

proposed methodology estimates the increasing forces and compensates
for them. Finally, the NMHE and NMPC modules identified the center
of gravity variations due to the non-symmetric configurations of the re-
configurable MAV as forces and compensated for them. On the other
hand, when the NMHE module was suspended, the re-configurable
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Fig. 22. Different formations X, H, Y, and T based on re-configurable MAV’s arms position.
Fig. 23. Position states [𝑥, 𝑦, 𝑧]⊤ of the experimental evaluation with the re-configurable
MAV. The measured and estimated values are shown by red and black colors,
respectively.

MAV did not manage to regulate its position, and the flight resulted
in a collision with the protection net.
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