
����������
�������

Citation: Miñon, R.; Diaz-de-Arcaya,

J.; Torre-Bastida, A.I.; Hartlieb P.

Pangea: An MLOps Tool for

Automatically Generating

Infrastructure and Deploying

Analytic Pipelines in Edge, Fog and

Cloud Layers. Sensors 2022, 22, 4425.

https://doi.org/10.3390/s22124425

Academic Editor: Robert Hsu

Received: 2 May 2022

Accepted: 7 June 2022

Published: 11 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Pangea: An MLOps Tool for Automatically Generating
Infrastructure and Deploying Analytic Pipelines in Edge,
Fog and Cloud Layers
Raúl Miñón 1,* , Josu Diaz-de-Arcaya 1 , Ana I. Torre-Bastida 1 and Philipp Hartlieb 2

1 Digital, TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava Albert
Einstein 28, Vitoria-Gasteiz, 01510 Álava, Spain; josu.diazdearcaya@tecnalia.com (J.D.-d.-A.);
isabel.torre@tecnalia.com (A.I.T.-B.)

2 Mining Engineering and Mineral Economics, Montanuniversitaet Leoben, Erzherzog-Johann-Straße 3,
8700 Leoben, Austria; philipp.hartlieb@unileoben.ac.at

* Correspondence: raul.minon@tecnalia.com; Tel.: +34-667-10-14-22

Abstract: Development and operations (DevOps), artificial intelligence (AI), big data and edge–
fog–cloud are disruptive technologies that may produce a radical transformation of the industry.
Nevertheless, there are still major challenges to efficiently applying them in order to optimise
productivity. Some of them are addressed in this article, concretely, with respect to the adequate
management of information technology (IT) infrastructures for automated analysis processes in
critical fields such as the mining industry. In this area, this paper presents a tool called Pangea aimed
at automatically generating suitable execution environments for deploying analytic pipelines. These
pipelines are decomposed into various steps to execute each one in the most suitable environment
(edge, fog, cloud or on-premise) minimising latency and optimising the use of both hardware
and software resources. Pangea is focused in three distinct objectives: (1) generating the required
infrastructure if it does not previously exist; (2) provisioning it with the necessary requirements to
run the pipelines (i.e., configuring each host operative system and software, install dependencies
and download the code to execute); and (3) deploying the pipelines. In order to facilitate the use of
the architecture, a representational state transfer application programming interface (REST API) is
defined to interact with it. Therefore, in turn, a web client is proposed. Finally, it is worth noting that
in addition to the production mode, a local development environment can be generated for testing
and benchmarking purposes.

Keywords: edge; cloud; analytic pipeline; MLOps; infrastructure; mine

1. Introduction
1.1. Problem Statement

In recent years, machine learning (ML) has been considered one of the technologies
driving the increasing value of companies, treating data as an important asset to make
decisions in a more agile, coherent and sometimes automatic way. This has been fuelled
by the introduction of big data technologies to enable the development of new algorithms
at scale [1] and by increased data generation in the last decade. Jones et al. [2] estimated
that there are seven billion connected devices in 2022 and that the number will increase
to 22 billion by 2025. In addition, the more generalised use and reduction in cost of
specific hardware technologies such as graphics processing units (GPUs) will establish a
promising environment for motivating companies to experiment with artificial intelligence
(AI) technologies.

However, to fully take advantage of the claimed benefits of ML, more than just the
model building phase should be considered. There are still several aspects in the machine
learning life cycle that must be addressed. For instance, data scientists create mathematical

Sensors 2022, 22, 4425. https://doi.org/10.3390/s22124425 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4319-0727
https://orcid.org/0000-0003-0900-1643
https://orcid.org/0000-0003-3005-1100
https://orcid.org/0000-0002-6256-2696
https://doi.org/10.3390/s22124425
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124425?type=check_update&version=2

Sensors 2022, 22, 4425 2 of 29

or machine learning models to make machines more intelligent by using a wide range
of methods, techniques and algorithms such as regression, classification, optimisation or
clustering. They excel in the creation of such models. However, as highlighted in [3], they
usually do not have the software engineering skills to deploy their code in real production
environments. This is because they usually have a strong mathematical background.
Nevertheless, the skills required are rather different, involving, among others, a detailed
knowledge of distinct environments, file formats, protocols and networks, being able to
provide a fault-tolerant scalable and distributed application or using specific techniques to
enhance and accelerate the software development life cycle.

Behind this idea, the machine learning operations (MLOps) paradigm has emerged.
As stated by Alla and Adari (2021) in [4], MLOps could be understood as an intersection
between machine learning and DevOps techniques. DevOps [5] is considered to be a set of
practices aiming to improve the software life cycle guaranteeing the continuous delivery.
In the same way, MLOps is focused on applying the DevOps perspective to manage high-
performance machine learning models, enabling continuous delivery to enhance their life
cycle, and, in turn, easing the duties of data analysts and data engineers.

One of the key challenges of MLOps is the rapid deployment of machine learning
models in production environments. In the book of Cloudera [6], they propose to address
the following challenges to accomplish this MLOps process:

1. Model packaging must be considered to enable automatising the ML life cycle where
an enormous tool ecosystem is offered.

2. Model deploying involves providing the model built to production environments and
serve it to be accessible from software clients and applications.

3. Model monitoring must be conducted to automatically detect model degradation and
performance issues. As such, when anomaly behaviours are identified, models can be
re-trained.

4. Model governance allows the tracking of models. The main approach is the provision
of a model catalogue where related metainformation could be associated. Thus,
models can be easily identified and found. In addition, having a suitable model
catalogue paves the way for establishing authentication and authorisation policies
over the models, as well as supporting auditing mechanisms.

Figure 1 shows a proposal of the ML life cycle where these challenges are considered.
Due to the importance of this life cycle, this paper is focused on the packaging, deployment
and serving phases.

Figure 1. Main phases of the ML life cycle targeted at operationalising ML models in produc-
tion environments.

Sensors 2022, 22, 4425 3 of 29

In addition to the necessity of putting the model into production, frequently, once
models are built, additional testing is required to guarantee integration with other systems.
Moreover, the strategy can involve not only the production of a model, but also the
execution of several chained steps involving acquisition, processing or data preparation as
shown in Figure 1—that is to say an analytic pipeline. For this purpose, it can be especially
useful to test such steps isolated in different hosts to better represent the target environment
and to be able to focus on each step of the process separately in the evaluation phase.
For these tasks, the creation of a development environment, simulating the production
one, can be useful to evaluate the whole pipeline to better understand how the steps are
behaving in an isolated environment.

On the other hand, the emerging edge and fog computing paradigms combined with
cloud computing and on-premise servers provide some benefits. For instance, instead of
executing the whole pipeline in the cloud, some time-critical steps could be executed in
the edge (where data are generated) to reduce latency. Moreover, several aggregations
could be performed in the fog since it normally receives data from the edge devices of
the same geographical area. However, this approach also implies additional challenges.
One of them involves the adequate allocation of the available edge, fog, and cloud stor-
age and computing resources in an optimised fashion, to maximise the throughput and
performance of the analytic pipelines and, at the same time, minimise the latency and
budget. In addition, the availability of a heterogeneous infrastructure becomes even more
complicated to manage since more diverse and advanced skills are required.

Another challenge is that in some situations the required infrastructure might not
previously exist. This creation process is not trivial, and an experienced software engineer
is required to perform this task. Moreover, the automation of this process is highly recom-
mended to easily replicate environments, enhance their maintenance, and avoid human
errors. In addition, independently, whether it is available or not, specific applications and
configurations must be carried out (ideally, also in an automated fashion) to guarantee the
adequate execution of the analytic pipelines. Consequently, the effort required to achieve
this objective is bigger.

Summarising, the process to deploy ML models or analytic pipelines into both testing
and production environments significantly depends upon the data engineers’ expertise.
Furthermore, before being able to start the deployment stage, target machines must be
created and carefully configured. Consequently, the use of automated processes and usable
software clients to facilitate these tasks to non-expert users would be of enormous help.
Unfortunately, this is not generally the case.

1.2. Contribution

This paper addresses some of the previously stated challenges. Concretely, it is
focused on packaging, deploying, and serving phases of the ML life cycle in heterogeneous
environments where edge, fog, cloud, and on-premise computing layers are involved, as
well as in the automatic generation and configuration of missing infrastructure to deploy
ML models or analytic pipelines. Moreover, the testing of analytic pipelines is addressed.

The main contribution of this research is Pangea, a tool which is able to automatically
generate execution environments and deploy ML models or analytic pipelines on them for
both development and production. In development, the generated environment is suitable
for testing and benchmarking the behaviour of the ML models and analytic pipelines;
in production, however, Pangea can create from scratch a heterogeneous infrastructure,
adapted to the specific needs of each pipeline step, considering edge, fog and cloud com-
puting layers, as well as on-premises infrastructures. For this purpose, Pangea follows
these distinct steps: (1) Creating the required infrastructure if it does not exist; (2) Installing
and configuring the necessary software, dependencies and underlying libraries; and (3) De-
ploying and serving the ML models or analytic pipelines. As such, the knowledge of data
engineers is packaged as a software tool minimising the interactions required with data

Sensors 2022, 22, 4425 4 of 29

engineers. Thus, the distinct DevOps and MLOps techniques required to address these
challenges are unified to avoid data scientists to deal with these complexities.

1.3. Motivation Example

This section shall put the proposed approach into an industrially relevant context,
demonstrating how Pangea can be used in the mining industry, specifically underground
mining. However, it is worth noting that the use of Pangea is not restricted to this specific
domain. Concretely, any domain requiring the deployment of machine learning models or
analytic pipelines into production environments could benefit from the features offered by
Pangea. For instance, in [7], PADL (the underlying Pangea language for defining analytic
pipelines) is proposed to deal with two scenarios associated with the food control and the
waste management areas. In addition, this scientific paper analyses a set of projects in
the smart cities domain in which the benefits of the deployment of analytic pipelines are
promoted.

The mining industry is facing many challenges in terms of productivity and safety.
Mining for the raw materials necessary for satisfying our daily needs is requiring that
we mine at ever-greater depths. This is causing increasingly complicated geotechnical
conditions, i.e., increased risks of rock bursts and other seismic events [8]. Highly sophisti-
cated mining designs in combination with rock support methods are commonly applied to
overcome the described challenges. Amongst others, these methods comprise shotcrete,
wire mesh, and rock bolts. They are all designed to maintain the shape and structure of
underground buildings. The spacing of rock bolts may be as little as on a 1 m × 1 m grid,
leading to a total sum of tens of thousands of rock bolts being installed annually in any
given underground mine. Depending on the mining system and general geotechnical
environment, the support measures experience high stresses, eventually leading to the
deformation, damage or even destruction of the installed rock bolts [9,10]. The status of a
single rock bolt, or a group of rock bolts installed in underground mining operations, may
hence provide essential information on the status of this mining section [11]. Information
may contain integrity as well as stresses and forces acting on the bolt at a given position
and time in reaction to the progression of the mining operation in space and time. With de-
creasing prices of small, versatile and reliable sensors (IoT devices) [12], the measurement
and observation capacities for these rock bolts are increasing significantly.

This generates so-called “intelligent” or “smart” rock bolt [13,14] as a cornerstone
for generating smart mining environments, reducing risks and increasing productivity.
The information of these sensors may be complemented by additional data from moving
equipment (haul trucks, drill rigs, loaders), as well as other sensors measuring environ-
mental parameters that generate a heterogeneous set of available information. Combining
this vast amount of different data sources and feeding them back to the mine management
system ultimately provides the mine management, technicians and supervisors with an
easy-to-use, fast and reliable decision-making tool.

For this reason, edge devices are installed along the mines to manage the data coming
from the intelligent rock bolts system, as well as additional sensors installed in various
other positions and equipment. Moreover, for each mine, a computer acting as a fog
infrastructure is provided to control the data coming from the edge devices. Finally,
managers have created an account in a cloud provider to deploy heavier workloads aiming
at analysing the data.

In order to fulfil their requirements, they decided to use Pangea to deploy an analytic
pipeline in its existing software infrastructure (edge devices and fog computers) and in the
missing required cloud infrastructure that Pangea will automatically create in the selected
cloud provider. Following this objective, a data scientist belonging to the mining company
defines the pipeline below, which is illustrated in Figure 2:

1. Acquisition phase: data from intelligent rock bolts are collected.
2. Data cleaning phase: non-necessary fields are discarded to minimise the amount of

data to transfer.

Sensors 2022, 22, 4425 5 of 29

3. Data cleaning phase: both null values and bad readings, not covering a defined
pattern, are filtered.

4. Data analysis phase: a previously trained classification model is executed to identify
the non-safe areas in the mines.

Discard
fields

Filter
nulls

Filter not in
threshold

Measure risk
level with

random Forest

Collect
data

Figure 2. Pipeline conceptualised for the scenario in which the diverse steps proposed are illustrated.

Once the pipeline is defined, the data scientist has two options to provide the necessary
model to deploy: create a portable format for analytics (PFA) document [15] with the model
or upload the code to be deployed to a Git repository (a technology aiming at tracking and
storing software changes into a centralised system, thus boosting the team collaboration).
Then, using a web client created for Pangea, the data scientists creates and submits to
Pangea, in development mode, a PADL document where the whole mine-related pipeline
is modelled. After this process, a docker-compose document is generated, simulating
an environment where each step of the pipeline and each required message queues are
deployed in a dedicated container. In this development mode, the adequate behaviour of
the pipeline can be tested and optimised.

Subsequently, the data scientist schedules a brief meeting with a data engineer to create
the infrastructure and the deployment map (a document where the pipeline is matched
with the infrastructure) documents by again using the web client. The infrastructure
document will contain the characteristics of each available node and the deployment
map document indicates where to deploy each step of the pipeline. Each map can be
mapping (an existing node is used to deploy that step of the pipeline) or prescription (new
infrastructure will be automatically created to deploy such a step of the pipeline). Then,
the three documents, alongside the cloud provider credentials, are submitted to Pangea
in production mode. In this moment, the Pangea process starts and creates the necessary
nodes whilst considering the steps of the pipeline identified in the deploy map document as
prescription. Afterwards, all the nodes involved in the pipeline are configured to be managed
using Ansible. Pangea then installs the required dependencies in the corresponding nodes
and copies or downloads in each node the source code to be executed (either a base code
with a PFA engine encapsulated or another code from a Git-compliant repository). Finally,
the code is executed in each node with the specific execution parameters defined in the
PADL document.

This way, the whole pipeline is deployed in the infrastructure already available or
created on the fly. Consequently, the data engineer role dependency is drastically reduced
to put analytic pipelines into production environments. In Section 5, this example will be
detailed from an implementation perspective to better demonstrate the potential of Pangea.

1.4. Structure

The rest of the paper is organised as follows. In Sections 2 and 3 the background
and related works are discussed, respectively. Subsequently, Section 4 is focused on
explaining the tool: firstly, an overview including the allowed processes and flows is
provided (Section 4.1). Then, the compatible models (Section 4.2) and the architecture
(Section 4.3) are described. Afterwards, modifications taken into consideration to extend
the underlying analytic pipeline description language are proposed (Section 4.4), and finally,
the proposed web client (Section 4.5) and implementation aspects are examined (Section 4.6).
Moreover, Section 5 proposes a complete scenario to validate the tool and shows some
performance metrics. In Section 6, conclusions are provided and finally, Section 7 provides
an outlook and perspective for future work and improvements.

Sensors 2022, 22, 4425 6 of 29

2. Background

This work is related to two distinct research fields: (1) the automatic generation of new
and existing infrastructure, since no available nodes must be created to successfully deploy
analytic pipelines. In addition to the automatic preparation of necessary software and
libraries and its required configurations; (2) the MLOps phase of puts analytic pipelines
into production since the main objective of this approach is the deployment of analytic
pipelines in heterogeneous infrastructures. Therefore, this section examines existing works
from both areas.

2.1. Infrastructure Automation

This subsection examines the software tools belonging to the DevOps paradigm.
Particularly, there are those dedicated to programmatically creating environments and
those in charge of—also programmatically—installing and configuring software in remote
machines. This emerging trend of creating, provisioning and configuring heterogeneous
environments by using code blocks is denominated as infrastructure as code (IaC) [16].

The proliferation of diverse cloud providers and the increase in data volumes necessi-
tates the existence of software tools able to configure a vast number of nodes with different
or similar configuration in an automated way. Having this goal in mind, several tools have
been created, among them, Chef [17], Puppet [18], Salt [19] and Ansible [20]. All these tools
support high availability and scalability. When the master goes down, diverse mechanisms
to supply it are considered, in turn, it is quite straightforward to move from a fifty nodes
scenario to a five hundred nodes one. Regarding the installation, all of them except Ansible
require a software agent to be installed in the nodes to be managed, by contrast, Ansible
relies on SSH (Secure Socket Shell) login without requiring the installation of additional
software in the administrated machines. In Chef and Puppet, the configurations are re-
quested from the nodes to the master in pull mode and in Ansible and Salt, the master
pushes the configurations to the managed nodes in an easier manner. On the other hand,
Ansible and Salt are based on Ai not Markup Language (YAML)) which is quite easy to
learn, but Chef uses Ruby Domain Specific Language (DSL)) and Puppet uses Puppet
DSL which are more complicated. In Table 1, a comparison considering the most relevant
features of these technologies is provided. Despite all of them being capable of satisfying
its requirements, Pangea utilises Ansible as its underlying provision mechanism. This is
due to the fact that Pangea is a tool which is capable of centralising the orchestration of
a given pipeline which is aligned with the push mode followed by Ansible. In addition,
before being able to use any of these tools, Pangea requires that some programmatical
configurations in the nodes are made. Ansible only requires an SSH configuration which
can be made by using mature Java libraries. Finally, YAML configurations minimise the
learning curve.

Table 1. Comparison among the key features of the main provisioning tools (extracted from [21]).
Xsymbol means that the technology satisfies the requirement.

Metrics Chef Puppet Ansible Salt

Availability X X X X
Ease of setup Not very easy Not very easy Easy Not very easy
Management Not very easy Not very easy Easy Easy

Scalability Highly scalable Highly scalable Highly scalable Highly scalable
Conf. Language DSL (Ruby) DSL (Puppet DSL) YAML (Python) YAML (Python)

Pricing (up to
100 nodes) USD 13,700 USD 11,200–19,900 USD 10,000 USD 15,000

Terraform [22] makes use of declarative configuration files to manage the interaction
with cloud APIs in order to control the workflows of diverse cloud services by offering
the main cloud technologies for providers to interact with. Thus, the processes of cre-
ating, destroying and updating cloud machines can be accelerated by minimising the

Sensors 2022, 22, 4425 7 of 29

dependency of specific providers. Therefore, Pangea makes use of Terraform to create
the missing infrastructure because of the big number of connectors available to reduce
vendor locking. Other alternatives for managing infrastructures are CloudFormation [23]
and OpenStack Heat [24]. However, these technologies were discarded because the former
is only compatible with Amazon Web Services (AWS) and the latter is only compatible
with OpenStack.

Additionally, it is worth mentioning complementary technologies such as big data
platforms which can execute heavy, fast and scalable processes by deploying a specific
technological stack into a pre-existing and previously configured set of nodes. For instance,
Cloudera Distribution Hadoop (CDH) [25] is a multi-environment analytic platform based
on open source technologies. It offers an enterprise data cloud to execute scalable and
elastic workloads. In addition, it offers Edge and AI support. 1010data [26] unifies data and
analytics on its platform, allowing users to perform analysis on data in the same place as it
is stored. Pivotal big data suite, a solution for agile data, can be deployed as part of pivotal
cloud foundry and platform as service (PaaS) technologies, on-premise and in public clouds,
in virtualised environments, on commodity hardware or delivered as an appliance. Azure
HD insight [27] is a PaaS solution offered in the Azure cloud to execute open source big
data technologies. These technologies have provided a source of inspiration in the area of
deploying specific services in already created environments. In this line, Pangea could be
integrated with them to provide an added value by integrating a technology in their stack
that is able to deploy analytic pipelines.

Another set of interesting related technologies is that of workload orchestrators. In this
field, Verma et al. [28] described a cluster manager for running large workloads on thou-
sands of machines. This project was the basis of the popular Kubernetes technology [29].
Similarly, in the area of workload orchestration in distributed environments, Docker
Swarm [30] must be considered. It offers fewer functions than Kubernetes, but with a
smaller technological footprint and with the advantage of being easier to use. However,
neither specifically focus on AI nor on edge device management. Other tools such as
KubeEdge [31] try to bring orchestration closer to devices on the edge but again are not
specifically focused on deploying analytic pipelines. Container-based technologies provide
a set of advantages when deploying models or software artefacts such as the portability or
the encapsulation of required libraries and configurations. Consequently, future versions
of Pangea will allow for the deployment of models and analytic pipelines into containers.
However, the use of containers will not be mandatory as it is in other MLOps technologies,
since specific edge hardware architectures do not adequately support them. Finally, it is
also worth mentioning approaches such as Apache Airflow [32] that programmatically
manage the workflow life cycle.

2.2. Analytic Pipelines

In the field of deploying ML models and pipelines, significant works can be high-
lighted. There have been some efforts to create model interchange formats that are inde-
pendent of tools, applications and systems. For instance, portable format for analytics
(PFA) [15] is a language for defining analytic models. With PFA, when a model is produced,
developers can deploy a model by using a Java or Python provided library that is able to
process the model definition and execute the corresponding scoring engine. Prior to PFA,
the XML-based language predictive model markup language (PMML) [33] was conceived.
PMML is also independent of specific technologies to define predictive and descriptive
models. As stated in [15], PFA enhances PMML capabilities to allow an extensible language
to integrate new models without having to update the base scoring engine. In addition, pre-
and post-processing features are supported by enabling model composition and chaining.
Finally, PFA is compatible with modern Big Data technologies. On the other hand, PADL [7]
enables defining analytic pipelines taking infrastructure aspects into consideration. Each
step of a pipeline is associated with a model to be deployed which can be a PFA model.
In this work, PADL was selected as analytic pipeline description language and, in turn,

Sensors 2022, 22, 4425 8 of 29

PFA is also supported, as it has an integrated PFA engine. Open neural network exchange
(ONNX) [34] is another open format to represent machine and deep learning models which
supports several AI frameworks. The support for this format will also be considered in
future versions of PADL.

3. Related Works

In this section, several technologies belonging to the same research areas of Pangea
are evaluated. In addition, Table 2 shows a summary of the key features taken into
consideration for this analysis. Concretely, the categories considered for the comparison are:

• Generate infrastructure: the ability to create the necessary but not previously available
infrastructure in cloud providers.

• Provision machines: being able to remotely configure, prepare and install libraries
and software.

• Deployment of analytic pipelines in distinct machines: some approaches can deploy
a model in a machine or deploy the whole analytic pipeline in the same machine.
In this category, the objective seeks to be able to deploy each step of a pipeline in a
separate machine.

• Edge, fog, cloud support: the possibility to somehow deal with these three comput-
ing layers.

MLFlow [35] is an open source platform that helps in the ML life cycle by addressing
challenges such as experimentation, reproducibility and deployment. In addition to track-
ing and packaging functionalities, it enables the deployment of MLFlow models served
by means of a REST API. Based on MLFlow [35], Scanflow [36] is an MLOps platform
to deploy and train models on top of Kubernetes. However, identically to MLFlow, only
deployment in REST API is supported. Consequently, the deployment of analytic pipelines
is not considered. Clipper [37] is a prediction system that can leverage the different ma-
chine learning frameworks for model development and packaging, and it provides means
for the communication of such models and the applications through a REST API. It does
not support packaging in streaming mode. ML.NET [38] is an open source framework
proposed by Microsoft to integrate models in applications and build pipelines. In [39], the
authors presented three distinct approaches for serving models in production environments
by using ML.NET as an underlying technology. In turn, this allows the authoring and
deployment of models built using the .NET stack. Zoo system [40] is devoted to deploying
data analytic services, mainly in edge devices, whilst considering their intrinsic constraints.
For this reason, it provides a type of safety domain-specific language. The Zoo workflow
is divided into two steps: development and deployment. In terms of deployment, Zoo
supports Docker, JavaScript and MigrateOS. As far as we are concerned, unlike Pangea,
these systems seem to not be able to deploy each step of an analytic pipeline in different
machines, but the whole pipeline in a unique one. In addition, Pangea also supports the
creation of missing infrastructure. PyCaret [41] is a lightweight open source Python library
with the purpose of preparing and deploying models. However, it is limited to notebook-
based deployments. Seldon [42] is an MLOps solution that provides the deployment of
ML models in Kubernetes and ML governance capabilities. It also supports the concept of
workflows or analytic pipelines but again, as far as we are concerned, the pipeline cannot
be deployed in different machines.

Edge cloud orchestrator (ECO) [43] is an architecture for ML deployments in edge and
cloud environments that considers different ML engines such as Spark, Flink or TensorFlow.
ECO defines intelligent overlay networks (IONs) containing directed acyclic graphs where
each task can be executed in different nodes. In contrast, Pangea can not only execute
a step of a pipeline in distinct nodes, but it can also automatically create the required
infrastructure when necessary. This way, data scientists do not have to deal with the
creation of the missing required nodes.

Stratum [44] is an event-driven big data-as-a-service for Internet of Things (IoT)
analytic life cycle management platform. It follows the model-driven approach of provide

Sensors 2022, 22, 4425 9 of 29

a declarative way to specify application and infrastructure requirements. A graphical
interface is provided to compose and deploy ML models in an abstract way and then the
final code is generated. Stratum can utilise a set of predefined ML algorithms encapsulated
in Linux containers to compose the pipelines. In contrast, in our approach, in addition
to not being limited to a subset of ML algorithms, references to Git code are supported
to deploy code blocks where ML algorithms can be provided. In addition, PFA-based
models can also be directly referenced since a specific code project was prepared with an
encapsulated PFA engine.

On the other hand, several model deployment solutions are constrained to the specific
ML library used during the training phase. For instance, Torchserve [45] and Tensorflow
Extended [46] belong to Pytorch [47] and Tensorflow [48], respectively. Consequently,
in addition to not being conceptualised to manage the underlying infrastructure, these
technologies cannot be used as a general purpose tool to deploy models.

Another interesting work is that of Kubeflow [49], which was focused on the de-
ployment of analytic pipelines/workflows in Kubernetes clusters. This is a promising
technology, but it currently does not provide support for restricted layers that do not have
a Kubernetes cluster, such as the edge and fog computing layers. Conversely, Pangea can
deal with operating systems without having a workload manager installed indistinctly of
the computing layer.

Table 2. Related work compared against the main functionalities of Pangea. Xsymbol means that the
technology satisfies the requirement.

Technology Generate
Infrastructure Provision Machines Deployment in

Distinct Machines
Edge, Fog, Cloud

Support

MLFlow - - - X
Scanflow - - - X
Clipper - - - X
ML.NET - - - X

ZOO - - - X
PyCaret - - - -
Seldom - - - -

ECO - - X X
STRATUM X X X X

TFX - - X X
TorchServe - - X X
Kubeflow - - X -

Pangea X X X X

Among the studied technologies, none cover more than two categories apart from
STRATUM. However, as previously commented, it is limited to a subset of ML algorithms.
Consequently, it can be concluded that there is an existing gap to create Pangea as a
unified tool capable of managing the required infrastructure, provisioning it, and deploying
analytic pipelines in different nodes belonging to the edge, fog and cloud computing layers.

4. Pangea in Deep
4.1. Overview

This paper describes the conceptualisation of a software tool, denominated Pangea,
that aims to automatically deploy analytic pipelines in distinct environments (edge, fog,
cloud and on-premise). The motivation for creating Pangea lies in facilitating the op-
erationalisation of ML models and pipelines for non-expert users. Therefore, from its
conceptualisation, specific building blocks (see Figure 3) for addressing key MLOps fea-
tures were sketched out. In Figure 3, these preliminary building blocks are shown.

For this work, PADL syntax [7] was embraced. PADL enables the description of
the different steps composing an analytic pipeline and the communication mechanisms

Sensors 2022, 22, 4425 10 of 29

among them. In addition, among other features, it supports establishing the model to be
deployed and the input–output parameters required to execute it. PADL is technology and
infrastructure agnostic, which makes it suitable for considering the desired environments
(edge, fog, cloud and on-premise). Therefore, each step of the pipeline can be separately
deployed in any node of a given heterogeneous infrastructure.

Figure 4 presents the development and production modes defined for assisting users
in the deployment of analytic pipelines.

Figure 3. Pangea building blocks for the packaging, deploying, and serving of ML models; as well as
for generating the required infrastructure.

DEPLOY PIPELINE

Production

Mode
Development

No

Yes

Does exist the
infrastructure?

DEPLOY INTO
CONTAINERS

CREATE
INFRASTRUCTURE

PROVISION
INFRASTRUCTURE

DEPLOY PIPELINE

Figure 4. Deployment of pipelines in development or production with PANGEA.

The development mode aims to generate a container infrastructure wherein the diverse
steps of a pipeline and the necessary communication technologies are deployed. As such,
the analytic pipeline can be prepared in a simulated local environment for testing and
benchmarking purposes. The input consists of a PADL document describing the steps of the

Sensors 2022, 22, 4425 11 of 29

pipeline to deploy. Then, a process is triggered to create a docker-compose file [50] that data
scientists could execute to have the pipeline deployed for local testing. The automatically
generated docker-compose file is composed of a service for each step of the pipeline and
services for simulating the communication mechanisms among the steps. Figure 5 shows
this process.

Figure 5. Development process aimed at automatically creating a set of docker containers, start-
ing from a PADL document, to test and validate an analytic pipeline before being deployed in a
production environment.

The production mode creates the necessary non-existing infrastructure, provisions
and configures the required software and libraries in the target nodes and finally, deploys
and serves the pipeline into production. In addition to a PADL document, two additional
documents must be provided to accomplish this process (see Figure 6):

• Infrastructure document describes the infrastructure by listing the available nodes
and their required properties such as universally unique identifiers (UUID), hostname,
resources (CPU, number of cores, disk and memory) or root credentials for SSH access.

• Deploy map document: defines a mapping between the PADL and the infrastructure
documents. Specifically, the hosts where the steps of the pipeline and the communica-
tion technologies must be deployed in. If the steps of the pipeline do not have any
host assigned due to insufficient pre-existing infrastructure, a suitable infrastructure
will be automatically generated for such steps.

Examples of the use of these three inputs are provided in Section 5.

Figure 6. Process for automatically generating and configuring the required missing infrastructure,
and packaging, deploying, and serving the analytic pipeline.

4.2. Compatible Models

Data transformations to be executed in each step of the pipeline can be provided in
diverse ways. The first objective was to be compliant with PFA scoring engines since it is a

Sensors 2022, 22, 4425 12 of 29

technology-independent format and the framework used in the training phase. For this
purpose, a base code with a PFA engine was built. This code supports the message queuing
telemetry protocol (MQTT) and Kafka producers and consumers in order to manage data,
as well as the capacity of reading log files. As such, when executing this code, in addition
to the PFA document to execute, the types of input and output technologies are passed
as parameters and the adequate consumer and producer will be utilised. This code has
two versions: one for edge and fog environments and the other one for the cloud, which
integrates real-time processing-distributed technology. In addition, for both versions, a
docker image was prepared for creating the necessary containers in the development mode.

On the other hand, the code available in Git repositories is also supported. This code
should provide the necessary consumers and producers, as well as a dockerfile, to be
compatible with the development mode.

4.3. Architecture

Figure 7 illustrates the proposed architecture derived from the building blocks sketched
out in Figure 3. First, a web client was built (described in Section 4.5) to enable users a
graphical interaction and a command line interface (CLI) client is planned to be developed.

Figure 7. Pangea architecture overview where the specific components derived from the building
blocks (see Figure 3) are materialised.

Then, the Orchestrator receives the queries, parses and analyses them and identifies
which internal processes should be triggered in order to be able to decide:

1. Whether the analytic pipeline requires being deployed in a development or production
environment.

Sensors 2022, 22, 4425 13 of 29

2. Whether it is necessary to create additional infrastructure and with which technologies
or, in contrast, there is already sufficient infrastructure.

3. The configurations, dependencies and code required for executing each step of a
given pipeline.

The tasks coordinated by the Orchestrator are conducted in diverse components. The
Infrastructure Generator, if necessary, creates specific machines to deploy the pipeline steps
and the communication technologies by using the infrastructure as code (IaC) paradigm.
The Provisioner installs the required software in each host considering aspects such as
the target operative system, the software version to install or the available host resources.
In addition, it deals with the specific configurations that should be made both in the host
operating system and its applications. Once the environment is prepared, the Pipeline
Deployer deploys each step of the pipeline in the corresponding host. A step of the pipeline
may be considered as a distributed task and consequently, such a step would be deployed
in various coordinated hosts.

Previously explained components make use of the Connectors Manager to establish
communication with the hosts. This component must support connectors for most market-
used technologies in the field. By using a decoupled component to manage the connectors,
future technologies easily could be integrated. It is worth mentioning the SSH support
since the provisioning and configuration steps will be made using this protocol.

Finally, different mechanisms for persisting information must be supported to enable
the flow of data among the pipeline steps. Therefore, the component Data Source Manager
is responsible for providing access to retrieving and storing information from the most used
sources of information technologies. Concretely, a wide range of persisting technologies
must be compatible to deal with the main architectures of the market:

• RDBMS (Relational Database Management System) includes traditional databases for
managing static data.

• NoSQL for scalable computations and support of distributed data.
• Time Series to enhance the management of temporal data.
• Search Engines for supporting complex data searches.
• Publish/subscribe technologies since they are widely used in real-time applications.
• File processing must be supported to deal with local or remote logs, comma-

separated values (CSV), JavaScript Object Notation (JSON) or extensible markup
language (XML).

4.4. Augmenting PADL with Expression Language

As stated in Section 4.1, a PADL document is the main input of the system. PADL
allows one to define an entrypoint with a command and parameters to run a specific code.
The problem raised was that some of the values of the parameters could not be set when
defining the PADL document. For instance, the folder where the executable will be stored
is not necessarily known by the data scientist nor the hostname of the created infrastructure.
Consequently, a preliminary expression language was defined to allow setting expressions
instead of fixed values which will be evaluated by Pangea during the process. It is worth
highlighting that, in development mode, random values are generated to supply such
parameters since there is no infrastructure involved in such a phase.

Concretely, the expression VAR{PROJECT_FOLDER} targets the folder where the code
to execute is downloaded. Each expression must have the following form {$EXPRESSION}.
In addition, these expressions can reference each of the three main inputs (PADL, infra
and deploy map) using the following syntax doc(TYPE_OF_DOCUMENT). It is also allowed to
reference the current element in a list by using the reserved word self. Finally, expressions
can be concatenated with the + symbol. In Listing 1, the following excerpt of PADL provides
an example using the expression language for setting the values of an entrypoint.

Sensors 2022, 22, 4425 14 of 29

Listing 1. Example of PADL expression language.

Entrypoint
entrypoint :

VAR{PROJECT_FOLDER} t a r g e t s the f o l d e r where the code to execute i s
downloaded

command : python3 VAR{PROJECT_FOLDER}/main . py
params :

doc { padl } t a r g e t s the PADL document
s e l f points to the current element of the p i p e l i n e

− " doc (padl) : { $. p i p e l i n e . s e l f . model } "
doc { deployMap } t a r g e t s the deployMap document

− " doc (deployMap) : { $. mappings . doc (padl) : { $. p i p e l i n e . s e l f . queues . input } . deploy
} "

− " doc (deployMap) : { $. mappings . doc (padl) : { $. p i p e l i n e . s e l f . queues . output } .
deploy } "
+ symbol concatenates express ions

− " doc (padl) : { $. id }+ doc (i n f r a) : { $. id }+ doc (padl) : { $. p i p e l i n e . s e l f . queues . input
}+ doc (deployMap) : { $. mappings . doc (padl) : { $. p i p e l i n e . s e l f . queues . input } . deploy
} "

− " doc (padl) : { $. id }+ doc (i n f r a) : { $. id }+ doc (padl) : { $. p i p e l i n e . s e l f . queues .
output }+ doc (deployMap) : { $. mappings . doc (padl) : { $. p i p e l i n e . s e l f . queues . output } .
deploy } "
− " doc (i n f r a) : { $. hosts . doc (deployMap) : { mappings . doc (padl) : { $. p i p e l i n e . s e l f .
queues . input } . host_uuid } . hostname } "
doc { i n f r a } r e f e r e n c e s the i n f r a document

− " doc (i n f r a) : { $. hosts . doc (deployMap) : { mappings . doc (padl) : { $. p i p e l i n e . s e l f .
queues . output } . host_uuid } . hostname } "
− " doc (i n f r a) : { $. hosts . doc (deployMap) : { mappings . s e l f . host_uuid } . hostname } ") ;

4.5. Web Client

A web client was created to facilitate end-users’ interaction with the REST service.
This client is an Angular-based application which integrates a JSON online editor [51]
with various view modes (text, code, tree view) to provide a usable means of editing the
required inputs (PADL, infrastructure and deploy map). In addition, an Angular material
design stepper component was included to guide the users during the editing process [52].
Figure 8 shows a screenshot of the Angular client.

Figure 8. Angular client overview: this client provides a stepper component including three JSON
editors (PADL JSON editor, infrastructure JSON editor and DeployMap JSON editor) and a confirma-
tion step.

Sensors 2022, 22, 4425 15 of 29

4.6. Implementation

For the implementation of the REST API and the different components of Pangea, Java
8 was used since it is a sufficiently mature language with sufficiently robust functionalities
to create APIs. In addition, the software project was configured with an Open API 3
generator. As such, when the API is modified, the related code structures and API classes
can automatically be re-generated. This allows the agile development of new functionalities.

The Infrastructure Generator module internally generates Terraform-compliant files
(version 0.14.4) to generate the infrastructures required and to manage their life cycle.
The Provisioner and Pipeline Deployer modules interact with a set of Ansible playbooks
(version 2.9.6) dedicated to provisioning the hosts and executing the pipeline steps. The se-
lection of both technologies is justified in Section 2.1.

The base code with the PFA engine and producers and consumers integrated (men-
tioned in Section 4.2) and destined for edge and fog nodes is developed in Python 3 since it
is a widely used language supported by a myriad of mathematical, machine learning and
statistical libraries. Moreover, the most mature PFA engine library is written in Python,
which is called Titus [53]. For cloud environments, Apache Spark [54] was selected for
being a unified data processing engine suitable for multiple purposes, such as batch and
real-time processing, compliance with the main ML algorithms and the provision of graph-
processing utilities. Concretely, the Apache Spark 3.0.1 structured streaming (in Python
language, PySpark) library was selected. On-premise, depending on the available resources,
the Python or the PySpark version will be deployed. Regarding the connectors, currently,
both versions support the consumers and producers of log files, MQTT and Kafka. Figure 9
shows the main blocks of this code.

Base Code

PFA engine

PySpark for Cloud

log file

MQTT

KAFKA

log file

MQTT

KAFKA

Python code for Edge and Fog

Supported input
connectors

Supported output
connectors

Figure 9. Base code created for deploying the models in streaming, alongside its different inputs
and outputs.

5. Validation
5.1. Objective and Design of the Experiment

This section provides the details for the implementation steps conducted to build the
scenario proposed in Section 1.3. With this scenario in mind, we aim to validate the main
contributions of this article by addressing each one of the following objectives:

1. Pangea can deploy analytic pipelines in heterogeneous environments in development
and production modes.

2. If necessary, unavailable infrastructure must be generated.

Sensors 2022, 22, 4425 16 of 29

3. The interaction with Pangea proposing a Web client which uses standard communica-
tion protocols such as HTTP (HyperText Transfer Protocol) can be facilitated.

The experiment was designed to answer the following questions:

1. Is Pangea able to assist in the deployment of a local pipeline for development?
2. Is Pangea able to deploy a pipeline in a production environment in an edge–fog–

cloud infrastructure?
3. Is Pangea able to automatically create the required infrastructure?
4. Does the web client provide JSON editors to build the necessary files and can the web

client submit such files to Pangea?

Therefore, the motivation example described in Section 1.3 defines a pipeline com-
posed with sufficient steps to deploy them in a heterogeneous infrastructure, both in local
and in production. Moreover, alongside this information, the communication technologies
will be used to define the PADL document. In addition, some virtual machines were created
to simulate nodes for edge, fog, deploying an MQTT broker and deploying a Kafka broker.
However, there is not any available node to simulate the cloud. Consequently, an Amazon
Web Service account was created to enable Pangea to automatically create such a node as a
virtual machine. Finally, during the process, the Web client must be used to interact with
Pangea to test its adequacy.

5.2. Execution Environment

The four virtual machines for simulating the existing nodes were prepared with an
Ubuntu 20.04 image using Vagrant 2.2.6. For this purpose, a Vagrantfile for each node was
created, where the hostname, IP, CPUs and memory parameters are defined. The root user
and password of all the machines is vagrant, which is used to establish the SSH connections.
Listing 2 shows an example of this file and Table 3 presents the parameters of each node. It
is worth mentioning that the nodes labelled as MQTT and Kafka are where the respective
brokers will also be automatically deployed by Pangea.

Listing 2. Example of the Vangrantfile used to create the necessary nodes for simulating the existing
infrastructure.

Vagrant . conf igure (" 2 ") do |conf ig|
Assignat ion of Ubuntu image
conf ig .vm. box = " bento/ubuntu −20 .04"
S e t t i n g the s p e c i f i c IP address
conf ig .vm. network " private_network " , ip : " 1 9 2 . 1 6 8 . 0 . 1 1 "
S e t t i n g the hostname
conf ig .vm. hostname = " node1 "
S e t t i n g the memory and number of CPUs values
conf ig .vm. provider " v i r t u a l b o x " do |v|

v . memory = 512
v . cpus = 1

end
end

Table 3. Vagrant machines’ configuration for simulating the necessary nodes.

Name IP Node CPUs RAM (Mb)

node1 192.168.0.11 EDGE 1 512
node2 192.168.0.12 FOG 2 4096

nq1 192.168.0.21 MQTT 2 2048
nq2 192.168.0.22 Kafka 2 4096

Additionally, a simple shell script is provided to the edge nodes to simulate a log file
where a new line in JSON format is inserted every five seconds to simulate data acquisition.
Each JSON record has its form shown in Listing 3.

Sensors 2022, 22, 4425 17 of 29

Listing 3. Example of the input data which includes timestamp, mine, rockbolt identification,
amongst others.

{
"timestamp": 1617807241, "rockbolt_id": 1,
"mine_id": 1, "vibration": 8,
"seismic": 23, "loading": 9,
"sound_wave": 2

}

The values are randomly generated, and we did not make an additional effort to
provide real values because this is irrelevant to demonstrating the use of Pangea. Similarly,
the thresholds and formulas defined in the PFA documents of Section 5.3 are invented,
but sufficiently valid for the purpose of exemplification. Finally, the code with both versions
of the PFA engine project was uploaded to an internal Git repository.

5.3. Execution

As defined in Section 1.3, firstly the data scientist defines the steps of the pipeline to
execute in the PFA format. The preliminary task, data acquisition, is not related to a PFA
document since the data are retrieved from the input queue of the first step of the pipeline.
The PFA document shown in Listing 4 is in charge of discarding the unnecessary informa-
tion produced by the intelligent rock bolts (IRBs) and only transferring the identification
fields and the loading and vibrations measures.

Listing 4. Discard fields with PFA: based on the input provided, the unnecessary fields for the
processing are removed in the output.

{"_comment1": "Input required fields",
"input": { "type": "record", "name": "rockbolt_in", "fields
": [

{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": ["double", "null"] },
{ "name": "seismic", "type": ["double", "null"] },
{ "name": "loading", "type": ["double", "null"] },
{ "name": "sound_wave", "type": ["double", "null"] }

]
},
"_comment2": "Output required fields",
"output": { "type": "record", "name": "rockbolt_out",

"fields": [
{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": ["double", "null"] },
{ "name": "loading", "type": ["double", "null"] }

]}, "method": "emit", "action": [
{"_comment3": "Process which discards certain fields",

"emit": {
"new": {

"timestamp": "input.timestamp",
"rockbolt_id": "input.rockbolt_id",
"mine_id": "input.mine_id",
"vibration": "input.vibration",
"loading": "input.loading"

Sensors 2022, 22, 4425 18 of 29

},
"type": "rockbolt_out"

}}]}

With the code of Listing 5, records with null values either in the loading field or in the
vibration field are filtered.

Listing 5. Filter nulls with PFA: this PFA excerpt accepts null values as input, but not as output;
in turn, incoming null values are filtered but are not streamed to the following step of the pipeline.

{"_comment1": "Input required fields",
"input": { "type": "record", "name": "rockbolt_in",

"fields": [
{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": ["double", "null"] },
{ "name": "loading", "type": ["double", "null"] }

]},
"_comment2": "Output required fields",

"output": { "type": "record", "name": "rockbolt_out",
"fields": [

{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": "double" },
{ "name": "loading", "type": "double" }

]},
"_comment3": "Process that checks whether there are null
data to discard the record",

"method": "emit", "action":[
{ "cast":"input.vibration",

"cases": [
{"as": "double", "named": "vibrationDouble",

"do": [{ "cast":"input.loading",
"cases": [

{"as": "double", "named": "loadingDouble",
"do": [{"emit": { "new": {

"timestamp": "input.timestamp",
"rockbolt_id": "input.rockbolt_id",
"mine_id": "input.mine_id",
"vibration": "vibrationDouble",
"loading": "loadingDouble"

},
"type": "rockbolt_out"

}}
]},

{"as": "null", "named": "loadingNull", "do": [
null]}

]}
]

},
{"as": "null", "named": "vibrationNull", "do": [null]

}
]}]}

Sensors 2022, 22, 4425 19 of 29

Listing 6 shows the PFA document that applies specific thresholds over the fields to
filter bad readings.

Listing 6. Filter by threshold with PFA: negative values are filtered as they are considered bad sensor
readings.

{ "_comment1": "Input required fields",
"input": {"type": "record", "name": "rockbolt_in",

"fields": [
{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": "double" }

,
{ "name": "loading", "type": "double" }

]},
"_comment2": "Output required fields",
"output": {"type": "record","name": "rockbolt_out",

"fields": [
{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": "double" }

,
{ "name": "loading", "type": "double" }

]},
"_comment3": "Process that checks whether the input or

vibration values are under zero to discard the registry",
"method": "emit", "action": [

{"if": {"<": ["input.loading", 0.0]}, "then": [null],
"else":

{"if": {"<": ["input.vibration", 0.0]}, "then":
[null],

"else": {"emit": { "new": {
"timestamp": "input.timestamp", "

rockbolt_id": "input.rockbolt_id",
"mine_id": "input.mine_id", "vibration": "

input.vibration",
"loading": "input.loading"

},"type": "rockbolt_out"
}}}}]}

Furthermore, Listing 7 illustrates the process followed by a random forest model to
classify the zone into three states: no risk, relative risk or high risk.

Listing 7. A random forest description using PFA.

{ "_comment1": "Input required fields",
"input": {"type": "record","name": "rockbolt_in",

"fields": [
{ "name": "timestamp", "type": "long" },
{ "name": "rockbolt_id", "type": "int" },
{ "name": "mine_id", "type": "int" },
{ "name": "vibration", "type": "double" },
{ "name": "loading", "type": "double" }

]},

Sensors 2022, 22, 4425 20 of 29

"_comment2": "Output required fields",
"output": "string",
"_comment3": "Process that considering loading and
vibration values assigns a specific safety level",

"action": [
{"if": {"<": ["input.loading", 2.5]},
"then": {"string": "no_risk"},
"else":

{"if": {"<": ["input.loading", 4.8]},
"then": {"string": "relative_risk"},
"else":

{"if": {"<": ["input.vibration", 5.2]},
"then": {"string": "relative_risk"},
"else": {"string": "high_risk"}}

}}]}

Subsequently, the data scientist creates the PADL document using the Pangea client
(Figure 10 shows a screenshot of the client when editing the PADL document). The pipeline
section models the diverse steps of the pipeline, each associated with the corresponding
PFA model. In addition, the input and output queues are defined for each step to identify
where data come from and goes to. Finally, there is a queues section where the queues used
in each step are defined, identifying its type and specific necessary values. For instance,
in the expanded queue, from_disk, the path of a log file is provided which simulates the
acquisition phase. Apart from the visible fields in Figure 10, there are additional fields such
as the entrypoint definition as it is exemplified in Section 4.4.

Figure 10. Screenshot of the client when editing the PADL pipeline definition. The four steps of
the pipeline are defined and specific properties can be observed such as the URI where the code is
located, the model to be executed and the queues defined.

Sensors 2022, 22, 4425 21 of 29

Then, the PADL document is submitted to Pangea in development mode. As such,
a docker-compose file is generated as shown in an excerpt of Listing 8.

Listing 8. Docker-compose excerpt where a container for each step of the pipeline with its properties
can be seen (note the different parameters in each entrypoint used to instantiate the container).

d i s c a r d F i e l d s :
hostname : " d i s c a r d F i e l d s a s s e t "
container_name : " d i s c a r d F i e l d s a s s e t "
image : " pfa "
environment :
− "TZ=Europe/Madrid "
entrypoint :
− " python "
− "/home/pfa −deploy/main . py "
− " mi ne s_ di sc ar d_ f ie ld s . pfa "
− " mqtt "
− " kafka "
− " −6158 from_disk0 "
− " −6158 edge2fog1 "
f i l t e r N u l l :

hostname : " f i l t e r N u l l a s s e t "
container_name : " f i l t e r N u l l a s s e t "
image : " pfa "
environment :
− "TZ=Europe/Madrid "
entrypoint :
− " python "
− "/home/pfa −deploy/main . py "
− " m i n e s _ f i l t e r _ n u l l s . pfa "
− " mqtt "
− " kafka "
− " −6158 edge2fog0 "
− " −6158 fog2cloud1 "

This file describes one container for each step of the pipeline having the parameters
required for the image as an input. Moreover, there are additional containers to simulate
the queues required to execute the whole pipeline. Finally, the local deployment can be
achieved by executing the docker-compose file using the command docker-compose up in
the data scientist’s PC. Thus, the pipeline can be locally evaluated to analyse the adequate
behaviour of the models integrated together in a pipeline and the communication mecha-
nisms. For instance, testing the whole pipeline could be beneficial to identify incompatible
formats between the output of a model and the input of the following one, before deploying
it into a production environment. Another advantage is to analyse whether the queue
technologies are being properly used by the correspondent producers and consumers.

Once the pipeline has been verified in local mode, it is the moment to deploy it in
a real environment. For this purpose, the data scientist would briefly require the help of
the data engineer to create—using the Angular client—the infrastructure and deploy map
documents. Firstly, the available infrastructure is described in the infra document, as shown
in a screenshot in Figure 11. In addition to the hardware configuration, such as the number
of cores and memory, the SSH configuration must be provided. It should be noted that
this document was created as a matter of illustration for a research objective. For future
enhancements, security will be more seriously considered. Afterwards, the deploy map
document (screenshot in Figure 12) must also be built to match each step of the pipeline
and each queue with existing nodes or setting them as prescription, meaning that they must
be automatically created. In this document, the deploy attribute to guide Pangea where
each element should be deployed is also described. Currently, the values supported for
such an attribute are edge, fog, cloud, disk, mqtt, and kafka. In this way, Pangea installs the
libraries and software in the correspondent node. For instance, in MQTT nodes, Mosquitto
is installed, whereas in kafka nodes, Kafka and Zookeeper are installed. Another example
is that in edge and fog nodes, the PFA engine base code is downloaded and utilised

Sensors 2022, 22, 4425 22 of 29

and, in contrast, in cloud nodes, the PFA engine is encapsulated in a PySpark Structured
Streaming application where the PFA engine is integrated as a user defined function (UDF).
It is worth mentioning that for this version of Pangea, Spark is deployed in a single machine
as a matter of illustration. Future versions will manage the distribution of the computation
between a worker and a set of slaves. As a last step, cloud-provided credentials must also
be submitted to be able to generate the necessary infrastructure (note again, security will
be enhanced in the future). Once the required input is built, it is submitted to Pangea using
the client.

Figure 11. Screenshot of the client when editing the infrastructure definition. An example of the
required properties of each node is represented.

Then, Pangea starts the process and follows the steps below:

1. Parse of the input documents.
2. Create the required infrastructure: in this step, the infrastructure marked as prescrip-

tion in the deploy map document needs to be generated. For this purpose, a Terraform
template is provided with variables that are generated on-the-fly by examining the
input documents. Then, the terraform init and terraform apply processes are
triggered to create the infrastructure using such a template populated with the neces-
sary values. Finally, the correspondent data of the recently created infrastructure are
integrated in the infra and deploy maps documents.

Sensors 2022, 22, 4425 23 of 29

3. Provision: this step configures the nodes and downloads and installs the necessary
code. This process can be divided into a few sub-steps:

(a) If there were hosts in the infra document not used in the deploy map document,
they are discarded.

(b) An Ansible inventory file is generated to manage the nodes to operate with.
(c) An Ansible configuration file is generated
(d) SSH access is configured in the nodes to be operated with Ansible.
(e) Several Ansible playbooks are executed to install the required dependencies in

each node. For instance, the installation of Git, Mosquitto, Kafka or Spark.
(f) The file /etc/hosts of each node is configured with the IP and hostname of the

rest of the nodes involved in the pipeline to facilitate communication among
them.

(g) The code to execute in each node is downloaded by using the previously
installed Git client. Concretely, for this example, the image of the PFA engine
code is downloaded in edge and fog nodes, and the PFA engine code integrated
with PySpark is downloaded in the cloud node.

4. Deploy: firstly, the expressions defined in the parameters of the entrypoint are evalu-
ated to extract the values and then, the code is invoked in each node by another Ansible
playbook with these parameters and the command is also defined in the entrypoint.

Figure 12. Screenshot of the client when editing the deploy map document.

Sensors 2022, 22, 4425 24 of 29

When the process finishes, some validations are performed to verify that each step of
the pipeline is deployed and that the pipeline is working correctly. Concretely, in edge and
fog nodes, the command ps -aux | grep python is executed and in the cloud node, the
command ps -aux | grep spark. Thus, the required processes are identified as running
processes. In addition, the Mosquitto and Kafka topics are consumed to ensure that the mes-
sages are arriving using, respectively, the commands mosquitto_sub -h IP -t topic and
kafka -console -consumer.sh --topic topic --from -beginning --bootstrap -server
localhost:9092.

5.4. Performance

This subsection provides some metrics regarding Pangea execution. Five different exe-
cutions were conducted to better illustrate the time taken to deploy pipelines, the memory
consumption and the CPU usage. For this exercise, no node was marked as prescription in
the deploy map document (that is to say, no infrastructure will be automatically generated)
to avoid additional AWS costs. The executions were performed in a machine with 64 GB of
memory and 8 CPUs with 2.10 GHz where Pangea was deployed alongside the Vagrant
machines described in Table 3. In addition, a node for simulating the cloud layer was
initialised using another Vagrant machine with 4096 MB of RAM and four CPUs.

The outputs of the executions were redirected to a text file to easily extract the times
taken. Moreover, a simple script was created to measure the percentage of total RAM
consumed and the CPU usage of the current Java process every thirty seconds.

In Figure 13, the times taken by the executions are shown. The maximum value is
15.6 min, while the minimum is 14.4 min. The arithmetic average is 14.948 min and the
standard deviation is 0.39.

0 2 4 6 8 10 12 14 16
Number of Minutes

1

2

3

4

5

Ex
ec

ut
io

n
Nu

m
be

r

14.4min

15.6min

14.76min

14.85min

14.98min

Figure 13. Time spent to execute Pangea over different executions.

Regarding RAM memory, the values collected every thirty seconds are a percentage of
the total memory of 64 GB. First, these values were transformed to Megabytes and then the
arithmetic average was also calculated. Figure 14 shows the results of this process. Execu-
tions 1, 3 and 4 consumed 0.7% (458 Mb) during the whole execution, whereas Execution
2 in the first measure consumed 0.7% and 0.8% (524 Mb) in the other ones. Execution 5
consumed 0.7% in the first four measures and 0.8% in the following ones. Consequently,
the maximum value was 522 Mb, the minimum value was 458 MB, the arithmetic average
was 481.8 Mb and the standard deviation was 29.287.

Finally, Figure 15 shows the arithmetic average of the CPU usage measures taken
every thirty seconds. The maximum CPU usage is 7.95%, the minimum 2.18%, the arith-
metic average is 5.84% and the standard deviation is 2%. However, this average of each
execution is not especially representative since the CPU usage significantly varies between
each execution. Therefore, Figure 16 shows a chart with the CPU measures taken every
thirty seconds.

Sensors 2022, 22, 4425 25 of 29

0 1 2 3 4 5 6 7 8
Average CPU usage in percentage

1

2

3

4

5

Ex
ec

ut
io

n
Nu

m
be

r

7.95%

7.3%

5.62%

6.15%

2.18%

Figure 14. RAM consumed by Pangea over different executions.

0 100 200 300 400 500
Average RAM consumed in Megabytes

1

2

3

4

5

Ex
ec

ut
io

n
Nu

m
be

r

458Mb

522Mb

458Mb

458Mb

513Mb

Figure 15. CPU usage by Pangea over different executions.

Despite not having included the infrastructure generation process in the performance
tests, it is worth mentioning that this process takes between ten and fifty seconds. Most
of the time is spent downloading and installing the software technologies such as Spark
and Kafka and the remaining time is spent on the configuration of the machines and the
pipeline deployment.

Sensors 2022, 22, 4425 26 of 29

Figure 16. Evolution of the CPU usage over a period of time.

5.5. Summary

By proposing this step-by-step example, the diverse claims of Pangea were addressed.
Concretely, each objective was fulfilled in the following way:

1. Automatically deploying analytic pipelines for both contexts development and pro-
duction in edge, fog and cloud infrastructures: the pipelines created by the data
scientist were deployed in a heterogeneous infrastructure composed of edge, fog and
cloud layers.

2. Automatically generating previously unavailable infrastructure: the cloud infrastruc-
ture was not available and a virtual machine in Amazon Web Service was created to
satisfy this requirement.

3. Providing a usable client: the process of submitting the required documents to Pangea
was conducted using an Angular client created for such an objective. As such, data
scientists do not require using a command line interface to create HTTP requests or
an external tool such as Postman.

6. Conclusions

In this paper, the Pangea tool aiming to automate the process of deploying analytic
pipelines in a heterogeneous infrastructure composed of edge, fog and cloud/on-premise
nodes was presented. Concretely, Pangea addresses the MLOps phases of packaging,
deploying and servicing ML models and analytic pipelines in both development and
production environments. In addition, the creation of missing infrastructure in cloud and
on-premise environments is supported. Moreover, a Web client was developed to ease the
interaction with Pangea.

In order to demonstrate the novelty of this tool, in Section 3, a substantial number
of technologies were analysed and contrasted with Pangea in the text and by using a
comparison table. From this section, it can be concluded that there is an existing gap
to justify the innovation aspects of Pangea and its development. Concretely, the main
advantage of using Pangea is the possibility of packaging and deploying analytic pipelines
while creating the required infrastructure when necessary. In addition, the deployment
of analytic pipelines in streaming mode, without using a REST API, and in a distributed
fashion is rarely possible with the existing MLOps tools. Consequently, data analysts
can benefit from using Pangea instead of a set of tools. From our perspective, the main
disadvantage is not to have the possibility to monitor and retrain analytic pipelines. As

Sensors 2022, 22, 4425 27 of 29

such, the unification of MLOps phases into a single tool would be complete. Therefore,
these considerations will be addressed in future works.

On the other hand, with the objective of showing the usefulness of Pangea, in Section 1.3,
a motivation example in the mine domain is proposed where Pangea can be seen as a unified
tool to encapsulate the knowledge of data engineers. As such, the interaction between data
scientists and data engineers can be minimised, as well as the necessary time to put analytic
pipelines in heterogeneous production environments. The use of Pangea in the mining domain
can help to improve the security of mines by deploying analytics to identify the safe zones by
utilising a usable and unified tool. However, Pangea is also useful in other domains requiring
the deployment of analytic pipelines

Finally, Section 5 provides a step-by-step example of Pangea to validate the three
main claims of this article: (1) the deployment of analytic pipelines in edge, fog and cloud
infrastructures; (2) the creation of missing infrastructure in cloud and on-premise layers;
and (3) the provision of a web client to ease the interaction with Pangea. Furthermore,
the performance analysis carried out shows that the measures are justified from the timing
perspective since there are several software artefacts to download, install and configure.

7. Future Work

Pangea is an ambitious tool which requires a large effort to be conceptualised and
implemented. This first version is sufficiently advanced to show its potential benefits.
However, we are already planning to extend it to deal with a wider range of use cases and
make it compatible with more technologies and connectors.

Currently, both PADL and Pangea are not designed to support the description and
deployment of analytic pipelines in the training stage. For this reason, we are already
defining mechanisms to achieve this goal. As such, data scientists will be able to automat-
ically deploy their training algorithms in real infrastructure to test them with minimum
effort. Thus, Pangea will facilitate the life cycle of trendy paradigms such as deep learning,
federated machine learning or transfer learning. Therefore, the ML life cycle will be better
supported, including training and test phases. In addition, to complete this life cycle
monitoring, re-training and model governance will also be explored in depth.

Pangea can automatically create infrastructures, but it is planned to manage the whole
infrastructure life cycle including the stopping and destruction of machines. In addition,
user accounts will be supported to enable users to log into Pangea and interact with their
pipelines and infrastructure. As stated in the paper, cloud and SSH credentials will be
treated in a more secure way.

Moreover, compatibility with new ways of providing models will be studied. For in-
stance, in the short term, there are plans to support MLFlow models [35].

Finally, the web client will be enhanced to support the management of the users,
the pipelines and the infrastructure. Additionally, a set of charts will be provided to
monitor pipelines and infrastructure behaviour. Consequently, Pangea will integrate some
mechanisms to advance in the monitoring field.

Author Contributions: Conceptualisation: R.M., J.D.-d.-A. and A.I.T.-B.; investigation: R.M., J.D.-d.-A.
and A.I.T.-B.; methodology: R.M., J.D.-d.-A., A.I.T.-B. and P.H.; implementation: R.M., J.D.-d.-A. and
A.I.T.-B.; supervision: R.M., J.D.-d.-A., A.I.T.-B. and P.H.; validation: R.M., J.D.-d.-A., A.I.T.-B. and
P.H.; writing—original draft: R.M., J.D.-d.-A., A.I.T.-B. and P.H.; writing: R.M., J.D.-d.-A., A.I.T.-B.
and P.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded in the context of the IlluMINEation project, from the
European Union’s Horizon 2020 research and innovation program under grant agreement No. 869379.

Data Availability Statement: Not applicable.

Acknowledgments: This work has received funding, in the context of the IlluMINEation project,
from the European Union’s Horizon 2020 research and innovation program under grant agreement
No. 869379.

Sensors 2022, 22, 4425 28 of 29

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adadi, A. A survey on data-efficient algorithms in big data era. J. Big Data 2021, 8, 1–54. [CrossRef]
2. Jones, J.; Ionita, A.; Mihai, I.C. AI and IoT Mapping and the Transition to an Interconnected Cyber Defence and Intelligence

Capabilities. Int. Conf. Cybersecur. Cybercrime 2022, 9, 5–22. [CrossRef]
3. Romero, O.; Wrembel, R.; Song, I.Y. An Alternative View on Data Processing Pipelines from the DOLAP 2019 Perspective. J. Inf.

Syst. 2020, 92, 101489. [CrossRef]
4. Alla, S.; Adari, S.K. What Is MLOps? In Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and

Microsoft Azure; Apress: Berkeley, CA, USA, 2021; pp. 79–124. [CrossRef]
5. Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; Meirelles, P. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv.

2019, 52. [CrossRef]
6. Challenges with ML in Production. 2022. Available online: https://docs.cloudera.com/machine-learning/1.1/product/topics/

ml-challenges-in-prod.html (accessed on 31 May 2022).
7. Díaz-de Arcaya, J.; Miñón, R.; Torre-Bastida, A.I.; Del Ser, J.; Almeida, A. PADL: A Modeling and Deployment Language for

Advanced Analytical Services. Sensors 2020, 20, 6712. [CrossRef]
8. Wagner, H. Deep Mining: A Rock Engineering Challenge. Rock Mech. Rock Eng. 2019, 52, 1417–1446. [CrossRef]
9. Li, C.C. Principles and methods of rock support for rockburst control. J. Rock Mech. Geotech. Eng. 2021, 13, 46–59. [CrossRef]
10. Rajapakse, R. Rock Bolts, Dowels, and Cable Bolts. In Geotechnical Engineering Calculations and Rules of Thumb; Rajapakse, R., Ed.;

Elsevier/Butterworth-Heinemann: Amsterdam, The Netherlands, 2008; pp. 303–320. [CrossRef]
11. Nöger, M.; Hartlieb, P.; Moser, P.; Griesser, T.; Ladinig, T.; Dendl, D. The potential of a mine-wide digital rock mass condition

monitoring system. In Proceedings of the 5th International Future Mining Conference, Perth, Australia and Online, 6–8
December 2021.

12. Singh, A.; Singh, U.K.; Kumar, D. IoT in mining for sensing, monitoring and prediction of underground mines roof support. In
Proceedings of the 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India,
15–17 March 2018; pp. 1–5. [CrossRef]

13. Song, G.; Li, W.; Wang, B.; Ho, S.C.M. A Review of Rock Bolt Monitoring Using Smart Sensors. Sensors 2017, 17, 776. [CrossRef]
14. illuMINEation-Projcet. 2022. Available online: https://www.illumineation-h2020.eu/ (accessed on 31 May 2022).
15. Pivarski, J.; Bennett, C.; Grossman, R.L. Deploying analytics with the portable format for analytics (PFA). In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco, CA, USA, 13–17
August 2016; pp. 579–588.

16. Rahman, A.; Mahdavi-Hezaveh, R.; Williams, L. A systematic mapping study of infrastructure as code research. Inf. Softw.
Technol. 2019, 108, 65–77. [CrossRef]

17. Chef. 2022. Available online: https://www.chef.io (accessed on 31 May 2022).
18. Loope, J. Managing Infrastructure with Puppet: Configuration Management at Scale; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2011.
19. Zadka, M. Salt Stack. In DevOps in Python: Infrastructure as Python; Apress: Berkeley, CA, USA, 2019; pp. 121–137. [CrossRef]
20. Zadka, M. Ansible. In DevOps in Python: Infrastructure as Python; Apress: Berkeley, CA, USA, 2019; pp. 139–145. [CrossRef]
21. Chef vs. Puppet vs. Ansible vs. Saltstack: Which Works Best for You? 2022. Available online: https://www.edureka.co/blog/

chef-vs-puppet-vs-ansible-vs-saltstack (accessed on 31 May 2022).
22. Terraform. 2022. Available online: https://www.terraform.io (accessed on 31 May 2022).
23. AWS CloudFormation. 2022. Available online: https://aws.amazon.com/es/cloudformation (accessed on 31 May 2022).
24. Openstack Heat. 2022. Available online: https://docs.openstack.org/heat (accessed on 31 May 2022).
25. Cloudera. 2022. Available online: https://www.cloudera.com (accessed on 31 May 2022).
26. 1010data. 2022. Available online: https://www.1010data.com (accessed on 31 May 2022).
27. Azure HD Insight. 2022. Available online: https://azure.microsoft.com/es-es/services/hdinsight (accessed on 31 May 2022).
28. Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wilkes, J. Large-scale cluster management at Google with Borg.

In Proceedings of the Tenth European Conference on Computer Systems, Bordeaux, France, 21–24 April 2015; pp. 1–17.
29. Foundation, C.N.C. Official Kubernetes Website. 2022. Available online: https://kubernetes.io (accessed on 31 May 2022).
30. Hykes, S. Docker Swarm Engine. 2022. Available online: https://docs.docker.com/engine/swarm (accessed on 31 May 2022).
31. KubeEdge. 2022. Available online: https://kubeedge.io (accessed on 31 May 2022).
32. Apache Airflow. 2022. Available online: https://airflow.apache.org (accessed on 31 May 2022).
33. Guazzelli, A.; Zeller, M.; Lin, W.-C.; Williams, G. PMML: An open standard for sharing models. R J. 2009, 1, 60–65. [CrossRef]
34. ONNX. 2021. Available online: https://onnx.ai/ (accessed on 31 May 2022).
35. Zaharia, M.; Chen, A.; Davidson, A.; Ghodsi, A.; Hong, S.A.; Konwinski, A.; Murching, S.; Nykodym, T.; Ogilvie, P.; Parkhe, M.;

et al. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 2018, 41, 39–45.
36. Liu, P.; Bravo-Rocca, G.; Guitart, J.; Dholakia, A.; Ellison, D.; Hodak, M. Scanflow: An End-to-End Agent-Based Autonomic

ML Workflow Manager for Clusters. In Proceedings of the 22nd International Middleware Conference: Demos and Posters,
Middleware ‘21, Virtual Event, 6–10 December 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1–2.
[CrossRef]

http://doi.org/10.1186/s40537-021-00419-9
http://dx.doi.org/10.19107/CYBERCON.2022.01
http://dx.doi.org/10.1016/j.is.2019.101489
http://dx.doi.org/10.1007978-1-4842-6549-9_3
http://dx.doi.org/10.1145/3359981
https://docs.cloudera.com/machine-learning/1.1/product/topics/ml-challenges-in-prod.html
https://docs.cloudera.com/machine-learning/1.1/product/topics/ml-challenges-in-prod.html
http://dx.doi.org/10.3390/s20236712
http://dx.doi.org/10.1007/s00603-019-01799-4
http://dx.doi.org/10.1016/j.jrmge.2020.11.001
http://dx.doi.org/10.1016/B978-075068764-5.50025-8
http://dx.doi.org/10.1109/RAIT.2018.8389041
http://dx.doi.org/10.3390/s17040776
https://www.illumineation-h2020.eu/
http://dx.doi.org/10.1016/j.infsof.2018.12.004
https://www.chef.io
http://dx.doi.org/10.1007/978-1-4842-4433-3_10
http://dx.doi.org/10.1007/978-1-4842-4433-3_11
https://www.edureka.co/blog/chef-vs-puppet-vs-ansible-vs-saltstack
https://www.edureka.co/blog/chef-vs-puppet-vs-ansible-vs-saltstack
https://www.terraform.io
https://aws.amazon.com/es/cloudformation
https://docs.openstack.org/heat
https://www.cloudera.com
https://www.1010data.com
https://azure.microsoft.com/es-es/services/hdinsight
https://kubernetes.io
https://docs.docker.com/engine/swarm
https://kubeedge.io
https://airflow.apache.org
http://dx.doi.org/10.32614/RJ-2009-010
https://onnx.ai/
http://dx.doi.org/10.1145/3491086.3492468

Sensors 2022, 22, 4425 29 of 29

37. Crankshaw, D.; Wang, X.; Zhou, G.; Franklin, M.J.; Gonzalez, J.E.; Stoica, I. Clipper: A {Low-Latency} Online Prediction Serving
System. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston,
MA, USA, 27–29 March 2017; pp. 613–627.

38. ML.Net. 2022. Available online: https://dotnet.microsoft.com/learn/ml-dotnet/ (accessed on 31 May 2022).
39. Lee, Y.; Scolari, A.; Chun, B.G.; Weimer, M.; Interlandi, M. From the Edge to the Cloud: Model Serving in ML. NET. IEEE Data

Eng. Bull. 2018, 41, 46–53.
40. Zhao, J.; Tiplea, T.; Mortier, R.; Crowcroft, J.; Wang, L. Data analytics service composition and deployment on edge devices. In

Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks, Budapest,
Hungary, 20 August 2018; pp. 27–32.

41. PyCaret. 2022. Available online: https://pycaret.org (accessed on 31 May 2022).
42. Seldon. 2022. Available online: https://www.seldon.io (accessed on 31 May 2022).
43. Talagala, N.; Sundararaman, S.; Sridhar, V.; Arteaga, D.; Luo, Q.; Subramanian, S.; Ghanta, S.; Khermosh, L.; Roselli, D. ECO:

Harmonizing Edge and Cloud with ML/DL Orchestration. Available online: https://www.usenix.org/system/files/conference/
hotedge18/hotedge18-papers-talagala.pdf (accessed on 31 May 2022).

44. Bhattacharjee, A.; Barve, Y.; Khare, S.; Bao, S.; Kang, Z.; Gokhale, A.; Damiano, T. Stratum: A bigdata-as-a-service for lifecycle
management of iot analytics applications. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los
Angeles, CA, USA, 9–12 December 2019; pp. 1607–1612.

45. Pytorch, TorchServe. 2022. Available online: https://pytorch.org/serve/ (accessed on 3 March 2022).
46. Baylor, D.; Breck, E.; Cheng, H.T.; Fiedel, N.; Foo, C.Y.; Haque, Z.; Haykal, S.; Ispir, M.; Jain, V.; Koc, L.; et al. Tfx: A tensorflow-

based production-scale machine learning platform. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1387–1395.

47. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019.

48. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. {TensorFlow}:
A System for {Large-Scale}Machine Learning. In Proceedings of the 12th USENIX symposium on operating systems design and
implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

49. Kubeflow. 2022. Available online: https://www.kubeflow.org (accessed on 31 May 2022).
50. Overview of Docker Compose. 2022. Available online: https://docs.docker.com/compose/ (accessed on 31 May 2022).
51. Angular Json Editor package. 2022. Available online: https://www.npmjs.com/package/ang-jsoneditor (accessed on 31

May 2022).
52. Angular Material design Stepper component. 2022. Available online: https://material.angular.io/components/stepper/overview

(accessed on 31 May 2022).
53. Titus. 2022. Available online: https://pypi.org/project/titus2 (accessed on 31 May 2022).
54. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al.

Apache spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]

https://dotnet.microsoft.com/learn/ml-dotnet/
https://pycaret.org
https://www.seldon.io
https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-talagala.pdf
https://www.usenix.org/system/files/conference/hotedge18/hotedge18-papers-talagala.pdf
https://pytorch.org/serve/
https://www.kubeflow.org
https://docs.docker.com/compose/
https://www.npmjs.com/package/ang-jsoneditor
https://material.angular.io/components/stepper/overview
https://pypi.org/project/titus2
http://dx.doi.org/10.1145/2934664

	Introduction
	Problem Statement
	Contribution
	Motivation Example
	Structure

	Background
	Infrastructure Automation
	Analytic Pipelines

	Related Works
	Pangea in Deep
	Overview
	Compatible Models
	Architecture
	Augmenting PADL with Expression Language
	Web Client
	Implementation

	Validation
	Objective and Design of the Experiment
	Execution Environment
	Execution
	Performance
	Summary

	Conclusions
	Future Work
	References

