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A B S T R A C T

Robots’ simultaneous relative pose estimation has become an essential step in most robotic-oriented problems,
such as map merging, collision avoidance, path planning, and multi-Simultaneous Localization and Mapping
(SLAM). This article addresses the problem of 3D and ego-centric relative pose estimation for a team of robots
equipped with Ultra WideBand (UWB) nodes. More specifically, the article introduces a novel optimization
framework to obtain pose information based on the embodiment of UWB ranges, without relying on any
fixed external infrastructure configuration of UWB anchors on the surrounding environment. In the proposed
method, we demonstrate the validity through the utilization of a Micro Aerial Vehicle (MAV) and a ground
vehicle that are equipped with multiple UWB transceivers, and each platform simultaneously acts as a based
anchor for the other platform for extracting an ego-centric position estimation of the UWB nodes. Additionally,
for the pose estimation, the obtained information is fused with the onboard Inertial Measurement Unit (IMU)
measurements on each of the considered robotic platforms. Finally, the efficacy of the proposed theoretical
framework is evaluated in multiple experiments, where the aerial and ground platforms are simultaneously
and separately navigating, and the ego-centric collaborative pose-estimation is compared with a VICON ground
truth positioning system.
1. Introduction

The ability to estimate the relative pose between multiple robots is
essential in many problems in robotics, such as the cooperative local-
ization (Kanellakis, Mansouri, & Nikolakopoulos, 2017), mapping (Fun-
abiki, Morrell, Nash, & Agha-mohammadi, 2020), tracking (Kelsey,
Byrne, Cosgrove, Seereeram, & Mehra, 2006), path planning, and colli-
sion avoidance (Mansouri, Kanellakis, Fresk, Kominiak, & Nikolakopou-
los, 2018). In these cases, the fundamental question that should be
addressed is the ‘‘Where am I?’’, and in the sequel, the robots should
determine their relative position and orientation (pose). This extrinsic
information is necessary for the coordination and cooperation of the
robotic team, thus resulting in the registration of the measurements in
the same frame of reference. The accuracy of relative pose estimation
can directly affect the quality of a sensor fusion, mapping, localization,
and overall mission.

In general, robotic applications can demonstrate their capabilities in
laboratory environments with the presence of high precision and high
sampling rate localization, as an example, with the use of Motion Cap-
ture (Mo-Cap) systems, which are capable to provide sub mm accuracy.
However, the same performance for the robotic platforms cannot be
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demonstrated in harsh environments, such as SubTerranean (Sub-T) en-
vironments (Mansouri, Kanellakis, Kominiak, & Nikolakopoulos, 2020)
as the Mo-Cap require infrastructure to be installed on fixed positions
beforehand, and their performance is affected by dust and high humid-
ity. Additionally, these dark and featureless environments challenge the
Visual Inertial Odometry (VIO) methods, since the cameras do not yield
sufficient information (Özaslan et al., 2017).

The Ultra WideBand (UWB) is a low-power, low-cost, low weight,
and high coverage range radio technology that can provide cm accu-
racy for distance/position information. Same as the Mo-Cap systems,
this technology requires a fixed installation of anchors for positioning
an attached tag (Fresk, Ödmark, & Nikolakopoulos, 2017; Kanellakis,
Fresk, Mansouri, Kominiak, & Nikolakopoulos, 2020) to a robot, which
makes it not-suitable for Micro Aerial Vehicle (MAV) deployment in
unknown environments.

This article proposes a framework for obtaining pose information
based on UWB ranges without considering the fixed installation of the
anchors on the environment. In the proposed method, the heteroge-
neous team of robots consisting of MAV and ground vehicle simulta-
neously update their relative pose, while navigating asynchronous.
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The platforms are equipped with multiple UWB transceivers, and the
optimization problem is proposed to solve the multi anchors and tags
positioning for a team of robots. The position information from the
UWB nodes is fused with on-board Inertial Measurement Unit (IMU)
measurements for obtaining an ego-centric pose information that is
relative to the constellation of the participating robots.

1.1. Background & motivation

A recent in-depth survey, presented in Shule, Almansa, na Queralta,
Zou, and Westerlund (2020) focuses on the UWB-based localization
for robots, while it highlights the lack of localization and navigation
techniques of heterogeneous multi-robot systems. Few works consider
the use of UWB technology for localization in outdoor environments.
In Kanellakis et al. (2020) the authors presented an autonomous MAV
inspection framework for wind turbines utilizing UWB and IMU sen-
sor to tackle this challenging maintenance scenario of the featureless
environment, where VIO cannot provide accurate localization and the
large infrastructure limits the usage of Global Positioning System (GPS)
sensors. This type of autonomous inspection requires an infrastructure
for installing the UWB anchors for the localization of the MAV. The
authors of Güler, Abdelkader, and Shamma (2019) study the concept of
infrastructure-free localization, between two MAV and relying on UWB
measurements, however there is no contribution towards the concept
of relative pose, while one robot act as the base estimating the relative
position of the second robot. The platforms do not take advantage
of inter-robot communication to improve the position estimates, thus
reducing the robustness of the overall positioning framework. Similarly,
in Guo, Li, and Xie (2020) the authors address the UWB localization for
multi MAVs formation, while the motion is limited in the 2D space. In
addition, in Nguyen, Hanif Zaini, Wang, Guo, and Xie (2018), the au-
thors aim to provide a relative localization and tracking between a MAV
and a ground vehicle, however, this work considers only translation
motions of the base frame, resulting in an offset tracking disregarding
the kinematics of a Unmanned Ground Vehicle (UGV) motion, which is
limited in 2D space, while changes in orientation are not considered.

The relative pose estimation can be tackled as well with camera-
based frameworks. In those cases, for a robot to provide continuous
relative pose estimates, it is necessary to maintain at all times a Line of
Sight (LoS) with the second agent. The authors of Jeong and Kweon
(2013) presented a relative pose estimation method for a UGV and
a MAV, where the ground platform was equipped with a top-looking
fish-eye camera and an IMU, while the aerial platform was equipped
with a down-looking ultrasonic sensor and an IMU. This method was
evaluated in a landing scenario, which is possible only if the UGV
camera maintains sight with the Unmanned Aerial Vehicle (UAV).
Another drawback of the vision-based relative pose estimation is the
need for calibrated cameras and pose sensors (Pizarro, Eustice, & Singh,
2003). In Song, Choi, and Kim (2016), the authors proposed a vision-
based relative localization framework based on ranges from a 2D LiDAR
and RGB-depth (RGB-D) camera information. The proposed algorithm
is able to provide robust position information from a fixed agent to a
moving target. Finally, the authors of na Queralta, Qingqing, Schiano,
and Westerlund (2020) presented a collaborative localization scheme
based on UWB and VIO, however, this work relies on a UWB fixed
infrastructure, while the main focus is the collaborative sensing of the
area for dense scene reconstruction purposes.

Table 1 presents a summary of the most similar state-of-the-art
works and their main features. Our proposed method relies on robot
communication, an integral part of collaborative robotics. Robots can
use a communication link not only to localize each other, as proposed
but also to share critical information about an unexplored area or signal
danger and other required information of a mission. While most stud-
ies utilize the UWB technology for localization purposes, either with
permanent installation or infrastructure-free environments, there is no
2

use of the attitude information. Merging localization and orientation
will provide the pose of a robot. Map merging, 3D reconstruction,
loop closure are a few methods that require orientation information,
thus increasing the importance of relative pose estimation in a team of
robots.

1.2. Contributions

Based on the aforementioned state of the art, the main contributions
of this article are threefold. The first contribution stems from the
establishment of the theoretical optimization framework for obtaining
the position information between multiple UWB nodes and fused ego-
centric orientation based on the IMUs information. In a robot agnostic
scenario, the relative pose is defined between multiple agents, while
the various robots are allowed to perform both translation and rotation
without limiting their locomotion capabilities.

The second contribution stems from omitting the need for fixed
UWB infrastructure. In the classical concept of the UWB positioning
scheme, there is a need of defining anchors and tags, which are used
to differentiate between the inertia frame and the client. Contrary, the
proposed novel approach does not require any external infrastructure
or defining nodes as anchors or tags. Thus, all nodes are active and
the concept of simultaneous anchors and tags of each UWB node for
collaborative ego-centric localization is novelty introduced.

Finally, the third contribution stems from evaluating the perfor-
mance of the proposed theoretical framework in a laboratory envi-
ronment. The obtained experimental results have a significant novelty
and impact the ego-centric relative pose estimation. The following
link https://youtu.be/NCcWICwgpqk provides a video summary of the
overall experimental evaluations.

1.3. Outline

The rest of this article is structured as follows. In Section 2 the
multi-robot synergy navigation concept, the key challenges, and the
notation are introduced. In Section 3 the mathematical formulation of
UWB position estimation. Furthermore, in Section 4, the multi-sensor
fusion of UWB and on-board sensors are presented. The experimental
evaluations are presented in Section 5. Finally, concluding remarks, as
well as future work are discussed in Section 7.

2. Problem formulation & preliminaries

The deployment of robots in harsh and unreachable areas is get-
ting attention especially in subterranean environments (Agha et al.,
2021). The robots should navigate, search, and exploit complex un-
derground environments, such as human-made tunnel systems, urban
underground, or natural cave networks. These areas can extend many
kilometers in length, have irregular geological structures, unpredictable
topologies, constrained passages, multiple levels, and vertical shafts.
These challenges limit the deployment of a single platform as MAVs
have limited flight time and ground vehicles cannot provide all-terrain
navigation capabilities. Additionally, these challenges affect the ac-
curacy of localization, mapping, and path planning frameworks as
the large, unknown, and harsh environments result in localization
uncertainties, drifts in mapping, etc. Thus, there is a need for relative
pose estimation between robots, to convert information to the same
coordinate frame for each robot.

Deployment of MAVs and ground vehicles with a high level of
autonomy in harsh underground environments poses multiple chal-
lenges (Kanellakis, Mansouri, Georgoulas, & Nikolakopoulos, 2018;
Mansouri et al., 2020), thus, the need for robust localization, stability,
and reliability during operation. In order to improve these aspects,
the robotics platforms can be equipped with high-end and expensive
sensor suites. However, equipping a MAV with multiple additional
sensors will affect the cost of the platforms the flight time (Eleft-

heroglou et al., 2019) and in extent the length of the mission. Thus,

https://youtu.be/NCcWICwgpqk
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Table 1
State-of-art relative pose and localization.

Reference Sensors Method Odometry Evaluation Pros/Cons

Güler et al. (2019) Three UWB sensors, Laser
range sensor

Monte Carlo localization
based on a particle profile
for a known velocity
profile

Relative localization Simulations &
real-world
evaluation

No need for permanent
installations, No need for
robot communication, No
altitude information

Guo et al. (2020) UWB sensors and build in
robot sensors

Relative localization based
onboard (UWB) ranging
and communication (RCM)
network

Infrastructure-free
cooperative relative
localization

Simulations &
real-world
evaluation

No need for permanent
installations

Nguyen et al.
(2018)

UWB sensors, IMU,
altimeters, optical flow

Relative pose based on
sequential fusion

Position and
Orientation

Lab experimental
Evaluation

No need for permanent
installations, Single robot
tracking

Jeong and Kweon
(2013)

Fish-eye camera and
ultrasonic range finder

Relative pose based on
fusion

Position and
Orientation

Lab experimental
Evaluation

No need for permanent
installations, always
requires LOS.

Song et al. (2016) RGB-Depth Camera, 2D
LiDAR

RGB-D and Lidar
measurements fusion, and
adaptive color-based
particle filter for visual
tracking

Relative localization Lab experimental
Evaluation

Provides only position
information, requires LOS.
o
a
a
i

(
𝑎
c
m

w

T
r
f
r

3

n
f
u
r

this article proposes the use of UWB technology for obtaining relative
pose information from an ego-centric approach. While the UWB system
definitely provides lower accuracy data, it is lightweight and a lot
cheaper than most of the 3D lidars and high-end cameras. Towards
this direction, this article investigates into the problem of relative pose
estimation for aerial and ground vehicles, while each platform acts as
UWB anchors for the other one. Thus, this article considers the ranges
information from both sides instead of the classical approach of fixed
anchors positions for tag position estimation.

In this work scalars are presented as non-bold characters such 𝑟,
or 𝑁 , while vectors are bold lower-case letters e.g. 𝒗, 𝒙 and matri-
ces bold upper-case letters like 𝑨, 𝑩. Finally, coordinate frames are
distinguished from scalars by the following font W, S.

Following the illustrated notations in Fig. 1, the coordinate frames
re denoted as {⋅} and its axes are labeled as 𝑥⋅, 𝑦⋅ and 𝑧⋅, adopting the
rame’s label as their subscript.

The UWB coordinate frame is noted as U and it is coincident with
obot/agent 1 coordinate frame R𝑎. The same robot has attached 𝑛𝑎
nchors/transceivers and for 𝑖 = 1,… , 𝑛𝑎 the anchors are located at
𝑎,𝑖 = [𝑥𝑎,𝑖, 𝑦𝑎,𝑖, 𝑧𝑎,𝑖] relative to the R𝑎.

Furthermore 𝑛𝑛 nodes are placed on the robot/agent 2 and for
= 1,… , 𝑛𝑛 the nodes are located at 𝒑𝑛,𝑚 = [𝑥𝑛,𝑚, 𝑦𝑛,𝑚, 𝑧𝑛,𝑚] relative

o the R𝑎. The nodes assumed are placed at an offset from the Center
f Gravity (COG) and origin of the coordinate frame R𝑏 of 𝒑𝑜,𝑚 =
𝑥𝑜,𝑚, 𝑦𝑜,𝑚, 𝑧𝑜,𝑚].

The proposed method requires communication among the robots.
n additional initialization stage is required if there is a loss of commu-
ication for a short duration while the robots are moving. During that
nitialization stage, the current pose of the estimated robot is required
or the re-initialization of the framework. Although there is no need for
obots to maintain a direct LoS to each other, walls or large obstacles
an partially block or reflect the communication messages among the
odes, and result in degraded estimates (Fresk et al., 2017). Without
osing generality, the following assumptions are made: (a) The initial
elative pose of the estimated object is known, (b) ranging information
mong the UWB nodes is available, (c) the positions of the transceivers
re kept constant relative to each other on a robot. The UWB frame is
reated and aligned with the IMU frame.

. UWB relative position estimation

The UWB technology is used to estimate the distance between two
ransceivers when they exchange multiple time-stamped messages with
ach other. We refer to that distance as range 𝑟 ∈ R+ and it is estimated
ased on the time it takes for a message to travel from one transceiver
o another (Mueller, Hamer, & D’Andrea, 2015) one. To localize an
3

bject via UWB technology in a 3D-space, at least four UWB anchors
re required. As it has been described in Fresk et al. (2017), while three
nchors are enough for the localization of an object the fourth anchor
s necessary to ensure the uniqueness of the solution.

In this work we consider a team of robots with unique identities
IDs) and present the concept of relative position between two agents
and 𝑏. The UWB coordinate frame U is located on one agent with

oordinate frame R𝑎, while a second agent with R𝑏 is deployed with
ultiple UWB nodes and it is the one localized relative to the R𝑎. As

is will be shown in the sequel, the same principals can be followed to
provide relative position of R𝑎 with respect to (w.r.t) R𝑏.

3.1. Position of the anchors

Let the agent 𝑎 with the moving frame U carrying a set of UWB
transceivers. The defined U is aligned with the IMU of this particular
robot and in extent with the robot’s origin R𝑎 i.e. 𝒒R𝑎U

= [𝟎𝑢, 1]⊤. We
will refer to the transceivers of that robot as anchors from now on
for clarity purposes. The anchors are placed at an offset from the R𝑎
denoted as 𝒑R𝑎

𝑎,𝑖 . While the placement of the anchors is constant, the
robot 1 can move and rotate in 3D, thus the updated positions of the
anchors w.r.t W can be calculated from (1).

𝒑W𝑎,𝑖 = 𝑹(𝒒WR𝑎
)𝒑R𝑎

𝑎,𝑖 + 𝑻 (WR𝑎), (1)

here 𝑹(𝒒WR𝑎
) denotes the rotation matrix from R𝑎 → W and 𝑻 (WR𝑎)

the translation between the origins of the frames. We can rewrite (1)
in a more compact form as:

𝒑W𝑎,𝑖 = 𝑪
( 𝒒

𝑻 (WR𝑎)
)

[𝒑R𝑎
𝑎,𝑖 , 1]

⊤, (2)

where 𝑪(⋅) would the homogeneous transformation matrix in (3)

𝑪( 𝒒
𝑻 (WR𝑎)) =

[

𝑹(𝒒WR𝑎
) 𝑻 (WR𝑎)

𝟎1×3 1

]

. (3)

he formulation in (2) captures the updates in 3D space of the first
obot and uses them to keep updated the state of the moving UWB
rame that will be used to obtain the relative position of the second
obot as it will be described in the sequel.

.2. Position of the nodes

In contrast to previous works (Fresk et al., 2017; Guo et al., 2020;
a Queralta et al., 2020) which place a single node on the subject robot
or estimating its position, in our novel proposed formulation we are
sing a set of nodes placed at 𝒑R𝑏

𝑛,𝑚. With the end goal to estimate the
elative position of R w.r.t R , which would be 𝒑R𝑎 we need to express
𝑏 𝑎 R𝑏
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Fig. 1. Relative pose estimation concept based on ranges for multiple robots. Each platform is equipped with multiple UWB transceivers with indication of their ranges among
them. Four basic coordinates frames are depicted R𝑎,𝑏 with origin at robots’ center of mass, IMU frames I𝑎,𝑏, the origin of the UWB network U𝑎,𝑏 and global frame W.
that position in terms of the nodes’ position. Let 𝑚 nodes with positions
𝒑U𝑛,𝑚 located at a distance 𝑟𝑖,𝑚 from an anchor 𝒑R𝑎

𝑎,𝑖 . To successfully
localize the robot 𝑏 by utilizing all nodes, we could solve 𝑚 times the
following optimization (4).

min(‖𝒑R𝑎
𝑎,𝑖 − 𝒑U𝑛,𝑚‖2 − 𝑟𝑖,𝑚)2, (4)

where 𝒑U𝑛,𝑚 would be the decision variable. This implies that we have
𝑚 set of decision variables and of course 𝒑U𝑛,1 ≠ ⋯ ≠ 𝒑U𝑛,𝑚. Taking into
account that UWB provides only position estimates, we would need to
translate the position of the nodes to the origin of R𝑏 to obtain the 𝒑R𝑎

R𝑏
.

But the distance measurements between anchors and nodes is far from
ideal and it is affected by noise and anomalies, thus the 𝒑R𝑎

R𝑏
(𝑚) estimate

from each node would not result to the same position.
Another approach would be to consider a combined optimization

with equality constraints.

𝒑U𝑛,1 − 𝒑R𝑏
𝑛,1 = 𝒑U𝑛,2 − 𝒑R𝑏

𝑛,2

𝒑U𝑛,2 − 𝒑R𝑏
𝑛,2 = 𝒑U𝑛,3 − 𝒑R𝑏

𝑛,3 (5)

⋯

𝒑U𝑛,𝑚−1 − 𝒑R𝑏
𝑛,𝑚−1 = 𝒑U𝑛,𝑚 − 𝒑R𝑏

𝑛,𝑚

where 𝒑R𝑏
𝑛,𝑚 would be the translation constant offset of each node to

the origin of R𝑏. The overall scheme would result to multiple decision
variables and a set of constraints.

Lastly our choice was to express the cost function with only the
decision variable 𝒑R𝑎

R𝑏
. This could be solved if we transform the origin

of the R𝑏 to the frame of each node and express it as function of 𝒑R𝑎
R𝑏

.
One can express immediately the relation between 𝒑R𝑎

R𝑏
and 𝒑R𝑏

𝑛,𝑚 into
the cost function itself and that would be:

𝐽 =
(

‖𝒑R𝑎
𝑎,𝑖 − (𝒑R𝑎

R𝑏
+𝑹(𝒒R𝑎R𝑏

)𝒑R𝑏
𝑛,𝑚)‖2 − 𝑟𝑖,𝑚

)2
. (6)

Following the formulation in (6) there are only three decision variables
𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑 , which are the coordinates of the R𝑏 w.r.t R𝑎. Furthermore,
since the optimization solves for the same decision three variables,
regardless of the node, there is no need for the constraints in (5).

Thus, for a set 𝑷 𝑗 containing all data of 𝑎𝑛 anchors positions, 𝑛𝑛
nodes positions, the ranges 𝑟𝑖,𝑚 among them, and the relative orienta-
tion between two robots can be defined as,

𝑷 𝑗 =
{

𝒑R𝑎 ,𝑹(𝒒R R )𝒑R𝑏
𝑛,𝑚, 𝑟𝑖,𝑚

}

(7)
4

𝑎,𝑖 𝑎 𝑏
and the combined optimization for a window of 𝑁 measurement sets
is given in (8).

min
{𝒑R𝒂

R𝑏
(𝑘)}

‖𝒑R𝒂
R𝑏

(𝑘) − 𝒑R𝒂
R𝑏

(𝑘 − 1)‖2𝑸0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

initial guess

+
𝑁−1
∑

𝑗=0
𝐽 |𝑷 𝑗

, (8)

where the cost function is enhanced with an initial guess term to smooth
the solution of 𝒑R𝒂

R𝑏
(𝑘), which is the decision variable at the time instant

𝑘, while with 𝑘 − 1 is denoted the previous position of the agent.

3.3. Solving the opposite problem

As stated in Section 1 one can use the acquired ranges among UWB
transceivers to solve the reverse problem and gain relative position
information for the platform that acts as the UWB anchors U frame.

The definition can stand vice-versa assuming a second UWB frame
U2 whose origin will be on the second platform coincident to R𝑏 and the
IMU. The same UWB transceivers assigned as nodes before this time are
assigned as anchors. The anchors are placed at an offset from the R𝑏 and
denoted as 𝒑R𝑏

𝑎,𝑖 . Similar to the previous analysis, the robot 𝑏 is able to
move so that the position of the anchors is updated on-line. The rotation
and translation can be described by the homogeneous transformation
matrix,

𝑪( 𝒒
𝑻 (WR𝑏)) =

[

𝑹(𝒒WR𝑏
) 𝑻 (WR𝑏)

𝟎1×3 1

]

. (9)

Furthermore, the set 𝑷 𝑗 containing all data anchors, nodes, relative
rotation between the two agents is the reverse case that is defined as,

𝑷 𝑗 =
{

𝒑R𝑏
𝑎,𝑖 ,𝑹(𝒒R𝑏R𝑏

)𝒑R𝑎
𝑛,𝑚, 𝑟𝑖,𝑚

}

(10)

Similarly, the optimization for a window of 𝑁 measurement sets is
given in (11).

min
{𝒑R𝒃

R𝑎
(𝑘)}

‖𝒑R𝒃
R𝑎

(𝑘) − 𝒑R𝒃
R𝑎

(𝑘 − 1)‖2𝑸0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

initial guess

+
𝑁−1
∑

𝑗=0
𝐽 |𝑷 𝑗

, (11)

where the solution of the optimization 𝒑R𝒃
R𝑎

(𝑘) is the relative position of

R𝑎 w.r.t R𝑏.
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4. Range-aided relative pose estimation

Using the information of the orientation 𝒒R𝑎R𝑏
, which describes

rotation from the R𝑎 frame to the R𝑏 frame, the relative pose is
omposed as:
R𝑏
R𝑎

= [𝒑R𝑎
R𝑏

, 𝒒R𝑎R𝑏
]⊤. (12)

he information of each robot sensor suite is fed to the Extended
alman Filter (EKF)-based sensor fusion module with the goal of im-
roving the accuracy and increasing the robustness against uncertain-
ies and outliers. As an initialization stage the sensors are rotated and
ranslated to the world frame.

.1. IMU kinematics

While every robotic setup might have different sensor suite, depend-
ng on the robot type or/and application scenario, the vast majority of
obotic platforms include an IMU sensor. Thus, it can be convenient to
stimate inertial odometry providing corrections from additional sensor
ources whenever they are available. Similar to Solà (2017), the state
ector of the IMU is defined as:

̂ imu = [𝒑I⊤
R
, 𝒗I⊤

R
, 𝒒I⊤

R
, 𝒃I⊤𝜔 , 𝒃I⊤𝑎 ], (13)

here the 𝒑I
R

and 𝒗I
R

are the position and velocities w.r.t to a robot
rame R. The rotation of the IMU relative to the robot in quaternion is
R. Furthermore, 𝒃I⊤𝜔 and 𝒃I⊤𝑎 are the biases of gyro and accelerometer
espectively.

The kinematics of an IMU-driven platform, adapted from Solà
2017), are provided by the following equations in (14). The measured
MU acceleration 𝒂𝑚 and angular rate 𝝎𝑚 are usually corrupted by noise
𝑛 and 𝝎𝑛 and the biases described above.

�̇�I
R
= 𝒗I

R
(14a)

�̇�I
R
= 𝑹(𝒒RI)

(

𝒂𝑚 − 𝒃I𝑎 − 𝒂𝑛
)

+𝑹⊤
WR

𝒈W (14b)

̇ I
RI

= 1
2
𝒒I
RI

⊗
(

𝝎𝑚 − 𝒃I𝜔 − 𝝎𝑛
)

(14c)

�̇�I𝑎 = 𝒂𝑤 (14d)

�̇�I𝜔 = 𝝎𝑤 (14e)

The described system can be written as a function �̇�imu = 𝑓 (𝒙, 𝒖,𝒘)
with input 𝒖 = [𝒂𝑚 − 𝒂𝑛,𝝎𝑚 − 𝝎𝑛]⊤ and acceleration and gyro biases
with Gaussian white noise 𝒘 = [𝒂𝑤,𝝎𝑤]⊤.

Considering, the nominal state of the system, where the system is
free of noise and perturbations (Solà, 2017) and by linearizing using
the small angle approximation of the error quaternion, the error-state
kinematics are described in Eq. (15).

𝛿�̇�I
R
= 𝒗I

R
(15a)

𝛿�̇�I
R
= −𝑹

[

𝒂𝑚 − 𝒃I𝑎
]

× 𝛿𝜽 −𝑹𝛿𝒃I𝑎 + 𝛿𝒈 −𝑹𝒂𝑛 (15b)

𝛿�̇�I
RI

= −
[

𝝎𝑚 − 𝒃I𝜔
]

× 𝛿𝜽 − 𝛿𝒃I𝜔 − 𝝎𝑛 (15c)

𝛿�̇�I𝑎 = 𝒂𝑤 (15d)

𝛿�̇�I𝜔 = 𝝎𝑤 (15e)

where [(⋅)]×(⋅) = (⋅) × (⋅) is the skew-symmetric cross product matrix.
The state-error 𝛿(⋅) defines the difference of the estimated value and
the quantity, for example 𝛿𝒑 = �̂� − 𝒑. This procedure defers for the
attitude portion, where the difference of quaternions is defined as error-
quaternion 𝛿𝒒 = 𝒒 ⊗ �̂�−1, which can be also written [1 1

2 𝛿𝜽], where
∈ R3 is angle vector.

̂ I⊤ I⊤ I⊤ I⊤ I⊤
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𝒙imu = [𝛿𝒑
R
, 𝛿𝒗

R
, 𝛿𝒒

R
, 𝛿𝒃𝜔 , 𝛿𝒃𝑎 ], (16)
4.2. UWB positioning fusion

The UWB sensor system provides ranges between the transceivers
and through a process described in Section 3 estimates of position are
derived. The position information from the UWB is used in combination
with the error-state equations. The translational offset between the IMU
and the origin of the UWB sub-network is fixed, as the position of the
sensor within the platform are always the same. The state for the UWB
is:

�̂�Uuwb = [𝛿𝒑U
R𝑖
]⊤ (17)

To compensate for the IMU drifts, commonly appeared in inertial
driven systems, we utilize the UWB absolute position measurements.
Although, UWB provides drift-free measurements the ranges are af-
fected by noise. The prediction portion of the EKF is based on the
IMU measurements. Thus, the system uses the linear and angular
accelerations as input 𝒖 = [𝒂,𝝎]⊤.

During the prediction stage the future states are estimated based on
IMU input 𝒖 and the states given in (13) as �̇� = 𝑓 (𝒙, 𝒖) and the predicted
covariance is computed by 𝑷 𝑘+1 = 𝑭𝑷 𝑘𝑭 ⊤+𝑸. Where 𝑭 is the system’s
jacobian and 𝑸 is the covariance zero mean Gaussian process noise.

During the update stage the new state estimates are updated by �̂� =
𝒙+𝑲𝒚 where 𝒚 is the UWB absolute position and 𝑲 is the Kalman gain.
Thus, during the innovation the UWB states are used for the correction
of the predicted states. The full prediction and update equations of a
Kalman filter can be found in Yaakov, X., and Thiagalingam (2004),
or Reif, Gunther, Yaz, and Unbehauen (1999).

A critical component for using data from different sources is to
ensure the correct timing of the data regardless of its arrival, i.e. to
compensate for delayed measurements that will affect the prediction
stage. Therefore, the timestamps of the onboard computation unit are
used for indicating the moment of arrival of each individual measure-
ment for all the sensors. The collected data then is properly injected
into a measurement window, which is updated every time a new mea-
surement arrives. A schematic of the measurement update procedure is
depicted in Fig. 2.

5. Experimental evaluation

For the evaluation of the theoretical framework presented in Sec-
tions 2–4, a sequence of experimental trials was performed in labora-
tory conditions to prove the performance of the proposed method. The
main focus of this evaluation is the pose estimation using the UWB
technology with multiple transceivers attached to the robot’s main
body. Initially, a detailed presentation of the components and configu-
ration used for the experimental sequence will be given. Following the
hardware and software specifics, the results of the evaluation will be
presented.

5.1. Experimental setup

This article evaluates the localization and relative pose estimation
between two robotic platforms with the aforementioned novel method-
ology. A ground platform, which is a quadruped robot (Spot) (Bouman
et al., 2020), equipped with a sensor suite able to provide 12-state
estimates �̂�spot of pose (position and orientation) and twist (linear and
angular velocity) while a set of five UWB nodes is fixed around its body
as depicted in Fig. 3. These anchors are placed strategically on the main
body to ensure their visibility from all sides of the ground platform.
Furthermore, to avoid anchors’ individual rotation and translation,
when the joints of ground platform are actuated, the anchors are not
placed on the legs of the ground platform. Table 2 shows the position
of the anchors w.r.t the center of gravity of the ground platform. Each
UWB transceiver orientation during installation on the robot does not
play a significant role in the overall framework, but the coordinates
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Fig. 2. State update block diagram based on the EKSF fusion of IMU and UWB.
Fig. 3. Quadruped robotic platform equipped with UWB nodes.

Table 2
Position of the installed UWB transceivers on the ground platform w.r.t R𝑎.

UWB nodes 1 2 3 4 5

𝑥 [m] −0.40 0.30 0.00 0.00 0.21
𝑦 [m] 0.00 0.00 −0.12 0.12 0.06
𝑧 [m] 0.00 0.19 0.00 0.00 0.95

Table 3
Position of the installed UWB transceivers on the quadcopter w.r.t R𝑏.

UWB nodes 1 2 3 4

𝑥 [m] −0.05 −0.16 −0.14 0.14
𝑦 [m] 0.0 0.21 −0.24 −0.24
𝑧 [m] 0.26 0.03 0.03 0.03

of the individual modules govern the selection of the coordinate sys-
tem. Based on our codes and several Robot Operating System (ROS)
packages, we have selected the NWU convention. Subsequently, we
selected the position of the individual nodes such that the resulting
UWB coordinate frame will be coincident with the IMU frame.

The aerial quadcopter platform is a MAV that is equipped with
four UWB nodes, as depicted in Fig. 4. Under each arm of the aerial
platform, an UWB node is installed for reasons that are described in
Section 3. The nodes have absolute physical distance from the COG of
the platform as depicted in Table 3. Similar to the ground platform
method for selecting the position for the transceivers, the UWB modules
coordinates are such to align the UWB frame with IMU frame following
the NWU convention again.
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Fig. 4. Quadcopter equipped with UWB nodes.

Initially the quadcopter is docked on the landing station located
on top of the ground vehicle, as shown in Fig. 5, while the ground
platform is already moving the quadcopter to initialize its position and
manually takes-off from the landing station. Three sets of experiments
are presented in the sequel. Initially, the quadcopter navigates around,
while the ground platform is immobilized, in the second case the
quadcopter is immobilized and the ground platform navigates, and in
third case both robotic platforms navigate around simultaneous. For the
evaluation of the proposed methodology, the Vicon Mo-Cap system is
utilized to provide the ground truth of both robots states. The testing
facilities consist of 19 Vicon cameras providing measurements with sub-
millimeter accuracy at a rate of 100 Hz. Additionally, for comparison
with a second commonly used reference system (VIO), we utilize the
RealSense Tracking Camera T265, advertised to provide 6 ms latency
between movement and reflection of the movement in the pose and 1%
error and drifting (Alapetite, Wang, Hansen, Zajaczkowski, & Patalan,
2020).

For the optimization (8), the available tuning parameters are the
measurements window, the weight of the initial guess and the weight of
the current measurement stage. These parameters were selected after
iterative tests, and they were kept constant throughout the experimen-
tation process. Considering the rate of the input data, through the ROS
framework from UWB devices, which is approximately at 20 Hz, the
measurement window 𝑁 is set at 6. A larger measurement window in-
creases the computation time and on the other hand, selecting a narrow
measurement window decreases the overall estimation performance.
The contribution of the initial guess is adjusted at 𝑸0 = 0.5 for 𝑥, 𝑦, 𝑧.
Increasing further the 𝑸0 is resulting in slight delays on the position
changes while setting the weight to zero is resulting in more estimation
spikes. The weight of the current localization stage was kept at 𝑸𝑤 =
1, as it appeared to give the best estimates on static and slow changes
of position estimation tests.

Table 4, shows the three different testing scenarios and the method
used to estimate the pose of the platforms. Furthermore, the exact
experimental sequence will be described in the sequel before presenting
its results.
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Table 4
Experimental Scenarios Summary.

Case 1 Case 2 Case 3

Ground platform Quadcopter Ground platform Quadcopter Ground platform Quadcopter

Vicon ✓ ✓ ✓ ✓ ✓ ✓

VIO ✓ ✓ ✓

UWB ✓ ✓ ✓ ✓ ✓ ✓

UWB-IMU ✓ ✓ ✓ ✓ ✓ ✓

Motion ✓ ✓ ✓ ✓
Fig. 5. Quadcopter is located on the landing station on top of the ground vehicle.

5.2. Results

The results of the experimental trials are divided based on three
different scenarios. For each case, the description of the scenario is
followed by illustrations and a discussion of the results.

5.2.1. Case 1: Quadcopter navigates around the stationary ground platform
For the first case, the ground platform is immobilized, and the quad-

copter manually takes off from the landing station and navigates. The
pilot performs maneuvers while changing the position and orientation
of the quad-copter simultaneously. Fig. 6 depicts the position estimates
of the quad-copter in the global frame of the UWB measurements, UWB
fused with IMU measurements, referred from now on as UWB-IMU,
VIO, and Vicon measurements. Can be noted that UWB and UWB-IMU
data follow similar trends to the Vicon measurements. Furthermore, it
can be noticed that UWB-IMU appears to be smoother when compared
to UWB in all three axes. For comparison purposes, the signal acquired
with VIO is illustrated, and it can be noticed that while in 𝑥 and 𝑦-axes,
the accuracy is higher compared to 𝑧-axis, as in the 𝑧-axis, the sudden
changes of altitude pushes the height measurements far from the actual
value.

Furthermore, Fig. 7 depicts the position estimates error of the quad-
copter in the global frame for the same sensors in comparison to the
7

Fig. 6. Case 1 — Estimated global position of the quadcopter with the proposed
method with and without fused IMU data versus VIO and Vicon measurements.

‘‘true’’ value. The VIO appears to have the lowest error with the excep-
tion when the altitude changes aggressively and loses the tracking. The
UWB and UWB-IMU have similar performance while UWB-IMU results
to less spikes.

For the same case, the rotation error of the quadcopter, relative to
the ground platform, is depicted in Fig. 8 as obtained from the fusion
of the UWB and IMU measurements. While the error stays under 0.05
[rad] in all cases, there are short peaks. The orientation Root Mean
Square Error (RMSE) values are similar for VIO, IMU, UWB-IMU with
combined RMSE of 0.032, 0.048, and 0.023 rad, respectively. These
error levels are in an acceptable range considering the small differences
in the placement of the sensors.

The estimation error of the ground platform pose from UWB and
IMU measurements on the aerial platform, as described in Section 3,
is presented in Fig. 9. For the first case, the ground platform is not
moving. Thus it is expected that ground platforms’ position will remain
constant. From the error plot, it is observed that the UWB measure-
ments show multiple jumps, which on the other hand, are kept to
a minimum with the fused with IMU data. It is worth noting that
during the initial seconds, the fused data has higher error until the
signal converges after a few position corrections from the UWB arrive.
However, the overall error is lower for the UWB-IMU.

The Fig. 10 depicts the relative position error of the quadcopter,
when compared to the ground platform, either relying on UWB or UWB-
IMU estimates. Overall, the fused with IMU data appear to be smoother
from UWB in terms of variations. In addition, it can be noticed that for
this experimental trial, the 𝑥-axis appears to have a larger drift, while
the 𝑦-axis of the UWB-IMU has a smaller error compared to the UWB.
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Fig. 7. Case 1 — Estimated global position error of the quadcopter with the proposed
method with and without fused IMU data versus VIO.

Fig. 8. Case 1 — Rotation error of the quadcopter w.r.t the ground platform.

Table 5 presents the RMSE values between the Vicon measurements
nd the VIO, UWB, UWB-IMU for both platform. In the first column,
t is observed that the localization obtained from UWB and UWB-
MU measurements provide better results in estimating the altitude of
he quadcopter when compared to VIO, while in the 𝑥-axis provides
lightly larger error (around .18m), and it has comparable performance
n the 𝑦-axis estimation. It should also be noted that the UWB technol-

ogy with fixed anchors in the infrastructure provides a cm accuracy.
hus the obtained results cannot improve the UWB measurements for
etter accuracy due to technology limitations. However, the obtained
esults indicate the usage of UWB technology in multi-robot applica-
ions, while the aerial platform will be equipped with lower cost and
ightweight sensors. Furthermore, Table 5 second column the RMSE val-
es of the ground platform position, compared to Vicon are presented.
8

Fig. 9. Case 1 — Estimated global position error of the immobilized ground platform
of the proposed method with and without fused IMU.

Fig. 10. Case 1 — Estimated relative position error of the quadcopter w.r.t the ground
platform of the proposed method with and without fused IMU data.

As shown in Fig. 9, where the error is lower for the UWB-IMU data,
it can be identified in the RMSE values as well. Finally, Table 5 third
column the overall improved performance of the UWB-IMU estimates
are reflected in the RMSE values for the relative positioning of the
platforms.

5.2.2. Case 2: The ground platform navigates around the stationary quad-
copter

For the second case, the quadcopter remains immobilized on top of
an elevated flat surface while the quadruped robot starts to navigate.
Similar to the previous scenario, the pilot performs maneuvers while
changing the position and orientation of the ground platform around
the quadcopter. Fig. 11 illustrates the position error estimates of the
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Table 5
Case 1 — RMSE values between Vicon measurements and position estimated from VIO, UWB, and UWB fused with IMU for
the quadcopter, ground platform, and the quadcopter position w.r.t ground platform.

Quadcopter Quadruped Quadcopter w.r.t Quadruped

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

VIO 0.18 0.14 0.549 – – – – – –
UWB 0.369 0.179 0.207 0.339 0.225 0.114 0.615 0.338 0.254
UWB-IMU 0.333 0.217 0.269 0.243 0.147 0.06 0.543 0.295 0.269
Fig. 11. Case 2 — Estimated global position error of immobilized the quadcopter with
the proposed method with and without fused IMU data versus VIO.

quadcopter in the global frame of the UWB measurements, UWB-IMU
measurements, VIO. Since the aerial platform is not moving, the VIO
measurements remain constant. It can be observed that UWB and UWB-
IMU data fluctuate but remain under an error of 0.5 m except for some
aggressive peaks.

Furthermore, it can be noticed that UWB-IMU appears to be
smoother and fluctuates less when compared to UWB in all three axes.
The ranges resulting from the UWB technology are subject to biases and
unexpected stochastic variations. The result of those variations results
in the fluctuation in position estimation from the optimization in (8).
However, the IMU measurements are not indicating any changes. Thus
the fusion of the UWB and IMU measurements increases the accuracy
and omits these changes.

The rotation error of the stationary quadcopter, relative to the
ground platform, remains constant and close to zero values, as depicted
in Fig. 12. It is observed that the RMSE of the orientation measure-
ments for all the measurements is very small since the platform is
stationary and there is no excitation of the sensors. The combined
orientation RMSE values are 0.011, 0.009, and 0.008 rad for the VIO,
IMU, UWB-IMU, respectively.

For the same case, Fig. 13 presents the position of the ground
platform based on UWB, UWB-IMU and Vicon data. The estimates of
the 𝑥-axis for the initial 15 s deviate from the real values. While for the
est of the experiment, the estimates converge closer to the expected
alues. The estimates on the 𝑦-axis follow the Vicon data closely,
hile throughout the whole dataset, fluctuations of approximately 0.5m
ppear in the altitude of the ground platform that, as indicated from the
icon measurement and the nature of this experimental trial, it should
9

e at a constant value.
Fig. 12. Case 2 — Rotation error of the quadcopter w.r.t the ground platform.

Fig. 13. Case 2 — Estimated global position of the ground platform of the proposed
method with and without fused IMU data compared to Vicon measurements.

Fig. 14 shows the position error of the ground platform between
Vicon and UWB, UWB-IMU. The UWB-IMU presents larger error com-
pared to the UWB for the 𝑦-axis in contrary to the other two axes.
Overall the error is larger in the begging of the response.

Fig. 15 illustrates the quadcopter’s and the ground platform’s rela-
tive position error between Vicon measurements and UWB or UWB-IMU
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Fig. 14. Case 2 — Estimated global position error of the ground platform of the
proposed method with and without fused IMU data.

Fig. 15. Case 2 — Estimated relative position error of the quadcopter w.r.t the ground
latform of the proposed method with and without fused IMU data.

stimates. Due to the higher uncertainty in the estimation of the ground
latform, the relative position diverges slightly more than the Vicon
ata. Overall, the fused with IMU data appears to be smoother from
WB in terms of variations. In addition, it can be noticed that for this
xperimental trial, the 𝑥-axis appears to have a larger drift, while the
-axis of the UWB has a smaller error, and the 𝑧-axis error is bounded

within 1 m.
Table 6 presents the RMSE values between the Vicon measurements

and the VIO, UWB, UWB-IMU for the quadcopter and ground platform.
The VIO has almost zero RMSE values while the platform remains
stationary in the first column. On the other hand, considering that the
10
Fig. 16. Case 3 — Estimated global position of the quadcopter with the proposed
method with and without fused IMU data versus VIO and Vicon measurements.

quadruped robot is moving, thus the reference UWB anchors are mov-
ing, the RMSE values for the position estimates are higher, as expected
due to the vibrations and other uncertainties. It is also observed that the
localization obtained from the UWB-IMU measurements provides better
results in estimating the position of the quadcopter when compared to
UWB in terms of RMSE. Table 6 in the second column shows the RMSE
values between the Vicon measurements and the ground platform po-
sition obtained from the UWB and UWB-IMU measurements. Contrary
to the previous case, where the ground platform was stationary, the
vibrations due to the platform’s motion create higher uncertainty on the
ranges, which is reflected in the RMSE of position data. The UWB-IMU
estimates have lower RMSE values on the 𝑥 and 𝑧-axes. While on the
𝑦-axis, the UWB appears to be close to the Vicon measurements with
lower RMSE. Finally, as presented in the last column of Table 6, the
overall performance of the UWB-IMU and UWB estimates RMSE values
are similar except the 𝑥-axis. The reason behind the lower performance
of the 𝑥-axis can be linked with the installation of the UWB on the
quadcopter, as they are fewer units and closer to each other, a series
of outlier ranges that drop the estimation performance or false initial
guess based on a false estimate.

5.2.3. Case 3: Simultaneous navigation of both platforms
The last experimental trial evaluates the performance of the pro-

posed method during simultaneous navigation of both the aerial and
ground platforms. Initially, the quadcopter is docked on the ground
platform, and after a quick 90◦ rotation lets the aerial platform take-
off and navigate. Immediately after the aerial platform reaches a safe
distance, the quadruped starts to navigate in the same area. Fig. 16
illustrates the position estimates of the quadcopter in global frame of
the UWB measurements, UWB-IMU, VIO, and Vicon measurements. For
this experimental trial, it can be noticed that the position estimates are
close to the Vicon data.

Fig. 17 shows the error between the Vicon measurements and the
estimated UWB, UWB-IMU, and VIO positions of the quadcopter. The
error remains almost zero in the first 10 s as the platform moves
docked on the ground platform. Most of the time, the localization of
the platform has an error under 0.5 m. Worth noting that in the 𝑥-axis
the UWB-IMU has a drift that results in an error of 1 meter.
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Table 6
Case 2 — RMSE values between Vicon measurements and position estimated from VIO, UWB, and UWB fused with IMU for
the quadcopter, ground platform, and the quadcopter position w.r.t ground platform.

Quadcopter Quadruped Quadcopter w.r.t Quadruped

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

VIO 0.003 0.003 0.002 – – – – – –
UWB 0.257 0.208 0.151 0.719 0.513 0.472 0.694 0.619 0.527
UWB-IMU 0.166 0.194 0.126 0.666 0.647 0.362 0.681 0.710 0.382
Fig. 17. Case 3 — Estimated global position error of the quadcopter between Vicon
and the proposed method with and without fused IMU, and VIO.

The rotation error of the quadcopter w.r.t the ground platform is
presented in Fig. 18. Overall, the orientation data’s accuracy is very
similar to the Vicon measurements; however, it is noticeable a constant
bias between the IMU and the UWB-IMU, VIO on the yaw of the
platform. Furthermore, it is observed that the RMSE of the orientation
is similar. The combined orientation RMSE values are 0.037, 0.035, and
0.034 rad for the VIO, IMU, UWB-IMU, respectively.

Fig. 19 shows the estimated global position error between the ‘‘true’’
values of the ground platform and the UWB, UWB-IMU. In this case, it
is likely to expect a lower positioning performance when both platforms
are navigating simultaneously due to the small distance among the
UWB transceivers (Table 3) on the aerial platform side, vibrations of
both platforms during motion, and outliers due to the communication
of the UWB transceivers. By eliminating these factors and increasing
the distance between the UWB units on the aerial platform, better
performance can be expected.

Finally, Fig. 20 illustrates the relative position error data between
the UWB, the UWB-IMU and Vicon data. It is observed that the estima-
tion of the position on 𝑦 is more accurate when compared to the 𝑥 and

axes.
The performance of the third scenario is reflected in the respective

MSE information in Table 7. The quadcopter has the least RMSE
alues. The VIO appears to have the least error but only approxi-
ately 0.1m less than the UWB estimated positions error. In addition,

lthough in Fig. 16 the UWB-IMU data appear to be smoother than
WB. Furthermore, the ground platform’s RMSE values appear to be
igher compared to the quadcopter. The UWB appear to have smaller
rror values compared to the UWB-IMU. This difference in RMSE
alues between the UWB and the UWB-IMU data is a result of the
11

nitial performance of the UWB position estimation. The last column of
Fig. 18. Case 3 — Rotation error of the quadcopter w.r.t the ground platform0.

Fig. 19. Case 3 — Estimated global position error of the ground platform of the
proposed method with and without fused IMU data.

Table 7 presents the RMSE of the relative position. It can be noticed that
the overall error is very similar between the UWB and the UWB-IMU
data for the 𝑦 and 𝑧 axes, while for the 𝑥-axis, the error is higher of
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Table 7
Case 3 — RMSE values between Vicon measurements and position estimated from VIO, UWB, and UWB fused with IMU for
the quadcopter, ground platform, and the quadcopter position w.r.t ground platform.

Quadcopter Quadruped Quadcopter w.r.t Quadruped

𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧

VIO 0.190 0.133 0.122 – – – – – –
UWB 0.218 0.240 0.262 0.609 0.526 0.539 0.662 0.674 0.539
UWB-IMU 0.233 0.229 0.289 0.818 0.669 0.6 0.942 0.698 0.558
Fig. 20. Case 3 — Estimated relative position error of the quadcopter w.r.t the ground
latform of the proposed method with and without fused IMU.

WB-IMU. RMSE of the relative position is affected mainly by the
stimated values of the ground platform.

. Discussion on performance

Several theoretical and technical observations have been made
orth pointing out throughout the experimentation. This section dis-

usses in detail the selection of the UWB placement and the effect
f the extended UWB modules in the estimated values—an additional
xperimental shows the performance of the estimation as the distance
etween the platforms increases—a discussion on the advantages of
witching to adaptive weights.

.1. Placement of UWB and vibrations

As presented during the initial testing, we observed ‘‘jumps’’ on the
-axis measurements due to the close installation of the UWB nodes. A
ifth elevated UWB is installed to reduce the amount of ‘‘jumps’’ and
mprove the 𝑧-axis accuracy. The UWB’s extended installation creates

swinging effect during the motion of the robot that can affect the
anging information. However, it has been found through experimen-
ation to provide significant consistency on the measurements instead
f affecting the accuracy of the pose. Installing the module closer to
he body can significantly reduce the swinging effect at the cost of a
ew extra ‘‘jumps’’ on the 𝑧-axis. Additionally, software filtering of the
istance measurements can be implemented to reduce the noise caused
y vibrations in all UWB modules. Furthermore, a hardware-oriented
olution would be using dampeners or gimbals in conjunction with the
xtender (if there is one) to improve accuracy further while maintaining
he measurements’ consistency.
12
Fig. 21. Estimated and actual relative position error for different distances between
the platforms.

6.2. Effect of UWB’s modules placement

The platforms placed immobilized at eight different distances in
between them. More specifically, when the aerial platform is docked
on the ground platform and at approximately 1, 2, 3, 4, 6, 8, and 10
meters apart (limited by the size of the room hosting the Vicon system).
Then we ran the estimation for 40 s, and we measured the deviation
of each axis from the actual distance after the optimization converges.
Fig. 21 compares the distance between the two platform versus the
estimated positions error. The 𝑒𝑥,𝑦,𝑧 denotes the RMSE between the
actual value (Vicon measurement) and the estimated relative position
of the quadcopter w.r.t the ground platform. The RMSE values shown
with square, star, circle markers for 𝑥, 𝑦, 𝑧 axes respectively denote the
estimated positions’ accuracy while the error’s variance, shown as error
bars, denotes the precision of the estimates.

While the distance between the platforms increases, the estimated
relative position accuracy, and precision decrease. That indicates an
upper limit on the in-between distance of two platforms, after which
the accuracy of the estimates decays. Furthermore, we can notice that
the 𝑦-axis estimates are both more precise and accurate regardless
of the distance between the robots. Additionally, the least accurate
estimates are on the 𝑧-axis, as identified during all the experiments.
These findings indicate an open research question for the optimal
placement of the UWB transceivers to improve the estimates when the
nodes have to be installed close to each other.

6.3. Adaptive parameters

Throughout the experimentation in this study, the tuning parame-
ters for the optimization were kept constant for comparison purposes. It
would be challenging to maintain the same parameters if the platforms
were operating in a more dynamic environment than the lab’s con-
trolled conditions. The proposed framework has several parameters that
can be adjusted online to improve performance in certain conditions.
Nowadays, robotic systems include complex sensor suites, which can
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be advantageous for providing an accurate initial guess in contrary to
relying on the previously estimated value. Additionally, the weight 𝑸0
an be updated based on the variances of the system, indicating the
evel of trust we have in the past states. Finally, the measurement
indow 𝑁 can be increased or decreased based on the availability of

omputation resources, thus increasing the window when the demand
s low and vice versa when the computation demands are already high.

. Conclusion and future work

This work established a theoretical framework for the estimation of
he relative pose between two robots based on UWB ranges and IMU
otations without the need of fixed infrastructure. As it has been shown
hrough extensive experiments for three different cases, the individual
obots could successfully estimate the global and relative pose of the
ther robot. Nevertheless, the performance it is highly linked with the
ccuracy of the respective ranges, which are used for the optimization.
hus, it has been shown that as closer to each other the transceivers
re installed, the estimation performance reduces correspondingly. In
he experimental validation, it has been identified that in all the three
resented cases it was more difficult to estimate the position of the
uadruped when the transceivers acting as ‘‘anchors’’ were installed
n the quadcopter were very close to each other. In addition, it has
een shown when the position data is fused with orientation data based
n IMU, the estimates seems to be more accurate. Yet, the UWB-IMU
ata can be characterized to be smoother, while some data spikes are
uccessfully filtered out.

Future work will focus on the technical aspect to improve the
ptimization stage with initialization components, fusion with onboard
ensors for improved pose estimation, numerical efficiency. In addition,
he method’s performance can be evaluated outside of a laboratory in a
arsher environment with more sensors, which can further address the
imitations and challenges. The current theoretical framework can be
xpanded further to estimate the 3D body rotation. While the platform’s
nitial relative pose is still a prerequisite, the problem will be decoupled
rom the use of IMU, thus without requiring continuous communication
etween robots when it is not required. Finally, the utilization of the
elative pose estimation will be investigated further in various robotic
pplications with a primary focus on multi-agent systems.
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