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The Tailings Storage Facility (TSF) stability monitoring
system using advanced big data analytics on the example

of the �elazny Most Facility

Wioletta Koperska1, Maria Stachowiak2, Natalia Duda-Mróz3,
Pawe“ Stefaniak4, Bartosz Jachnik5, Bart“omiej Bursa6,

Pawe“ Stefanek7

Abstract: Approximately 30 million tons of tailings are being stored each year at the KGHMs Zelazny
Most Tailings Storage Facility (TSF). Covering an area of almost 1.6 thousand hectares, and being
surrounded by dams of a total length of 14 km and height of over 70 m in some areas, makes it
the largest reservoir of post-�otation tailings in Europe and the second-largest in the world. With
approximately 2900 monitoring instruments and measuring points surrounding the facility, Zelazny
Most is a subject of round-the-clock monitoring, which for safety and economic reasons is crucial not
only for the immediate surroundings of the facility but for the entire region. The monitoring network
can be divided into four main groups: (a) geotechnical, consisting mostly of inclinometers and VW
pore pressure transducers, (b) hydrological with piezometers and water level gauges, (c) geodetic survey
with laser and GPS measurements, as well as surface and in-depth benchmarks, (d) seismic network,
consisting primarily of accelerometer stations. Separately a variety of di�erent chemical analyses are
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conducted, in parallel with spigotting processes and relief wells monitorin. This leads to a large amount
of data that is di�cult to analyze with conventional methods. In this article, we discuss a machine
learning-driven approach which should improve the quality of the monitoring and maintenance of
such facilities. Overview of the main algorithms developed to determine the stability parameters or
classi�cation of tailings are presented. The concepts described in this article will be further developed
in the IlluMINEation project (H2020).

Keywords: hydrotechnics, tailing dam, data mining, risk analysis, strength parameters

1. Introduction

Tailings Storage Facility (TSF) is one of the largest known geotechnical facilities
composed of earth embankments developed for the storage of non-cost e�ective, post-
�otation ore and water. As a typical example of TSF, we can investigate Zelazny Most
in Poland (see Fig. 1a). TSF is a structure served to store the �ne residual from mining
activities and it is normally surrounded by tailings dams. Tailings are the materials left over
after the process of separating the valuable fraction from the non-economic fraction of an
ore. Ore is crushed and milled to �ne sand in the plant to enable the extraction of precious
materials. We can distinguish three main construction methods usually used in tailings dam
construction: upstream, centerline, and downstream as depicted in Fig. 1b below.

Fig. 1. a) Overview of Zelazny Most TSF. b) TSF construction methods: upstream,
downstream, centerline

To design and construct tailings dams, the geotechnical properties need to be known
in particular density, grain size distribution, mechanical and hydrogeological properties.
The geotechnical tests can be divided into two groups: laboratory and �eld tests. When it
comes to laboratory tests, they are more precise and many geotechnical parameters can be
derived from these tests, moreover, they are carried out in well know testing conditions,
which simplify the analysis. Unfortunately, they are very expensive. On the other hand, the
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�eld tests are very simple to perform. The entire soil pro�le can be examined in one �eld
test. However, it is not possible to directly estimate the geotechnical parameters based on
this type of survey. They need to be correlated with laboratory tests, therefore being able to
obtain a good correlation between themwill help to examine the large structure like Zelazny
Most TSF more thoroughly. In the article, the classi�cation methods will be presented
based on the grain size distribution laboratory tests and CPT �eld tests. The presented
algorithms are the main analytical blocks developed in the cyber�physical system as part of
the Illumineation project [6]. Additionally, there are over 40,000 measurement points at the
ZM, that are a part of four monitoring networks: geotechnical, hydrological, geodetic, and
seismic. Ultimately, all data sources will be included in the data fusion process developed
as part of Big Data analytics to support TSF’s real-time stability assessment and risk
prediction.

2. Smart stability analysis for TSF based on
IOT technologies

Due to the spatial extent of TSF, the amount of recorded data in real�time, and the
current analytical challenges of the managers, the natural direction was to develop a robust,
multi-level IIoT platform that will incorporate cloud computing and distributed cloud
management. The platform will connect using wireless communication with the physical
mining world, which will be de�ned by an extensive, low-cost, all-embracing network of
sensors. The use-case concentrates around the automation of the analytical process of the
huge amount of data that is collected in the facility, which will be achieved by utilizing
the machine-learning techniques to assist engineers in the data analysis and interpretation.
The main problems and challenges related to the development of analytics for such huge
mining areas are presented in [4]. TSF poses a serious threat to the local environment and
society. We know of several structural failures from previous years that led to extensive
disasters. Due to the enormous requirements in terms of safety indicators, great emphasis
is placed on monitoring the TSF itself as well as its surroundings [7]. Dozens of thousands
of parameters are recorded from di�erent acquisition layers and stored in various forms in
several places. Currently, there are certain operational limitations in the �eld of analysis
and interpretation of results on an ongoing basis by the human resources. The dynamic
development of the Internet of Things technology in terms of the size and performance of
sensors, their integration, throughput, and wireless transmission speed have created new
opportunities for the development of a cyber�physical system supporting the management
of TSF in real�time [8]. The combination with online monitoring and arti�cial intelligence
provides automation of many component analyzes ensuring the detection of anomalies,
identi�cation of spatio-temporal patterns, indirect determination of strength parameter,
and �nally support of the decision-making process [15, 17�19]. Fig. 2 shows the main
modules feeding the analytical and decision-making process of the cyber-physical system
for TSF.
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Fig. 2. Main functional modules of a cyber-physical system dedicated to the security of TSF

3. Piezocone penetration �eld test

Cone Penetration Tests (CPT) and Piezocone Penetration Tests (CPTU) containing
the measurement of water pressure in the pores have been used in geotechnics for many
years [1, 12]. These tests allow the determination of various soil properties, such as soil
type, strength, and formability levels. CPTU is based on the introduction of the cone
penetrometer into the ground surface at a constant speed � 2 cm/s. The so-called cone
penetrometer is a cylindrical probe attached to the drill rod [11]. The probe is pushed from
the ground using the hydraulic pushing ring or the conventional drill rig using hydraulics
to the static thrust. In the case of this test, a probe with the tip area equal to 15 cm2, an area
of the friction sleeve equal to 225 cm2, and a cone tip angle of 60°was used. The diagram
of the cone penetrometer is presented in Fig. 3. The test measures the resistance of the

Fig. 3. The schema of cone penetrometer [10]
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cone tip and the friction sleeve as well as the water pressure in the pores � in this case, the
�lter is located behind the cone � D2. The measurement of these parameters is recorded
every 2 cm. The registered resistance parameters will correspond to the type of soil and its
properties, thanks to which it is possible to create an indirect method for soil classi�cation.
In addition, the water pressure in the pores allows taking into account ground moisture,
which a�ects the strength of the soil and the slip of the cone.

3.1. Parameters calculation from CPTU test

The CPTU allows measuring three variables dependent on depth. The �rst of them is
unit sleeve friction resistance ( 5B) that is got by normalizing the measured sleeve force (�B)
by the area of sleeve � �B [11, 13]:

5B =
�B
�B

Similarly, for the cone tip is the next measure � unit cone tip resistance:

@2 =
�)
�)

where �) is the tip force and �) is tip area. The important parameter that is dependent
between the above two values of resistance is so-called the fraction ratio:

’ 5 =
5B
@2
� 100%

Moreover, it is measured the pore water pressure. In this case, the measurement is
behind the cone and it is marked as D2. Water allows the cone to glide more easily in the
ground, so parameter @2 is dependent on the pore water pressure and this variable allows
for proper correction of it. Therefore, the corrected cone resistance is as follows:

@C = @2 ‚ D2 „1 � 0”

where 0 is strain index, in this case, it is 0 = 0�75. As it is known in the ground is the
stress depends on depth. Assuming that h is the thickness of a given soil layer and W is unit
weight depend on the depth, the total overburden stress can be described by:

fE0 „:” =
:Õ

8=0
W8�8

and for normalization by the pore water pressure � the e�ective overburden stress is as
follows:

f0E0 „:” =
:Õ

8=0
W8�8 � D0

The parameter D0 is in situ pore water pressure that can be determined from an addi-
tional dissipation test. To avoid its impact stress on parameters it can be used following
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normalizations:

&C =
@C � fE0
f0E0

@C1 =
@C
%0
�

s
%0
f0E0

�A =
5B

@C � fE0
� 100%

�@ =
D2 � D0

@C � fE0

Sequentially &C is normalized cone resistance, @C1 is dimensionless normalized cone
resistance, �A is normalized friction ratio, and �@ is pore pressure parameter. In addition,
as with any test, measurements may be subject to some error and outliers may appear.
Especially when multiple parameter transformations are performed, the impact of outliers
may increase. That is why it is so important to analyze outliers, detect and remove them.
For this purpose, it will be proposed own technique. The values are considered incorrect if
there are long distances to the preceding and the following value. It also was noticed that
the variance in the signal is not constant, so the average distance will be changing and the
constant threshold to detection cannot be used without proper normalization. In addition, it
can be assumed that the values cannot be negative. The method to detect outlier for signal
G (parameters 5B or @2) can be described by the following steps:

1. Find negative values G � 0 and converting them to zero.
2. Calculate the distances between point 8 and the next value (31) and the previous one

(32) as:

31 „8” = jG„8 ‚ 1” � G„8” j

32 „8” = 2 jG„8” � G„8 � 1” j

3. Calculate the moving average distance in a window of 200 samples (D) and using it
to normalize the distances 31, 32;

4. Check if both distances 31 „8”, 32 „8) are higher than the set threshold H and change
to the average of neighboring points:

G„8” =

8>>><
>>>:

G„8”� 31 „8” � �� 32 � �

G„8 � 1” ‚ G„8 ‚ 1”
2

� otherwise

The example of one of the distances with threshold and the result of outliers detection
is in Fig. 4.
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Fig. 4. The example of the outliers detection for unit sleeve friction resistance

3.2. Granulation analysis

The popular method to classi�cation various types of ground is granulation analysis.
This requires the grain size distribution laboratory test, so it cannot be widely used for soil
classi�cation in the �eld but can be a good starting point for the development of another
classi�cation method. Sieves with di�erent hole sizes are used for the test, which allows
measuring the percentage of particles of a given size. Three standards allow classi�cation
of the ground into �ve groups (Table 1).

Table 1. The �ve groups classi�ed by grain size [mm] for three standards

Standard Clay Silt Sand Gravel Cobble

PN-86 B-02480 0�0.002 0.002�0.05 0.05�2 2�40 ¡ 40

ISO 0�0.002 0.002�0.063 0.063�2 2�63 ¡ 63

ASTM 0�0.002 0.005�0.075 0.075�4.74 4.75�75 ¡ 74

The content of individual soil types can be inferred by constructing the so-called grain
size distribution curves. The example with boundaries for the ISO standard is presented in
Fig. 5.

In addition, two important parameters can be de�ned using this method. The �rst is SFR
which is the percentage of clay, silt, and sand divided by the percentage of gravel and cobble.
The second is the percentage of clay. Mechanical research allowed the identi�cation of six
groups of tailings that can be determined using the following limits for the SFR parameter
(Table 2). On the other hand, the cohesive ground is about SFR � 0�7 and non-cohesive
for SFR ¡ 0�7.
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Fig. 5. The example of grain size distribution curve

Table 2. SFR values separating tailings groups

I II III IV V VI

SFR�0�001 0�001�SFR�0�6 0�6�SFR�1�5 1�5�SFR�2�5 2�5�SFR�7�4 SFR¡7�4

4. Construction of a tailings classi�er model

We focus on building a tailings classi�er based on CPT data to indirectly estimate
strength parameters in amore cost-e�ective and fasterway in comparison to laboratory tests.
In the literature, this approach is commonly known generally for natural soils for several
decades. The primary methods for classifying natural soils are based on two parameters
from the CPT test and established partition limits. For example, methods using partition
curves on two-dimensional plots can be found in [3, 12]. Examples of machine learning
applications, as decision trees, ANN, and SVM can be found in the article [2] or general
regression neural network [9]. However, there is no guide on how to do this for tailings or
other anthropological grounds. With the help of the previously described �eld study, an
attempt was made to analyze the collected statistics to build a tailings classi�er model.

4.1. Granulation analysis

First, the characteristics of the variables were examined: their availability and ranges.
After that, we calculated all the indicators needed for the analysis. As a result, we got
282.359 rows with 18 variables. Table 3 shows the availability of the individual variables.

In most cases the variables are full, the exceptions are ’ 5 , SFR and clay. In ’ 5 case,
there are unique situations where the coe�cient after calculation gave the in�nite value.
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Table 3. Availability of data in particular variables

CPTID I @2 5B D2 @C ’ 5 W W3 fE0 f0E0 D0 &C �A �@&C1 SFR Clay @= Class

Data
absence
[%]

0.0 0.0 0.0 0.0 0.0 0.0 0.007 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.871 96.871 0.0 0.0

The variables SFR and clay come from a granulation test. This information contains most
of the information about the group to which the sample belongs. However, this test can
only be performed rarely, hence the small number of samples. Therefore, this reduces the
number of lines to 8.836, because the model can only be trained on lines that contain
information from these two variables. Therefore, this reduces the number of lines, because
the model can only be trained on lines that contain information from these two variables.
Next, let’s take a look at the areas (see Table 4). Some variables have very wide ranges of
values. High values can be noticed, for example, for the variables �A and ’ 5 which are also
presented in percentage units. Anomalous values correspond to errors that occurred while
executing tasks and were �ltered before further analysis. Moreover, it is worth adding that
the assumed distribution for D0 is greatly simpli�ed. At the moment, it was impossible to
consider this problem in more depth. Therefore, in the article, we will consider models
based solely on variables unrelated to D0.

Table 4. Variable ranges for selected data

@=
[MPa]

@2
[MPa]

5B
[MPa]

@C
[MPa]

f
[MPa]

f3
[MPa]

min �0.31 0.00 0.00 �0.01 17.84 14.69

mean 6.05 6.69 0.13 6.74 19.96 16.10

max 55.92 56.48 0.51 56.50 21.58 17.18

&C
[�]

�@
[�]

@C1
[�]

SFR
[�]

f0E0
[kPa]

D0
[kPa]

min �1.07 �0.28 �0.04 0.00 11.76 0.00

mean 11.56 0.04 27.85 2.10 610.23 74.07

max 785.79 1.06 355.55 61.50 1078.61 161.90

�C
[%]

’ 5
[%]

Clay
[%]

I
[m]

D2
[kPa]

fE0
[kPa]

min �731.82 �
10746.27 0.00 0.66 �69.47 11.76

mean 3.41 �0.43 20.74 35.92 187.76 684.30

max 68.70 60.35 78.00 63.00 2016.42 1240.51
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4.2. Selection of input parameters to the classi�er

The �rst statistic presented is the correlation matrix, that shows the values of the
correlation coe�cients for the corresponding pairs of variables. It is shown in Figure 6a.
As can be seen, many variables are strongly correlated with each other. This is an expected
result as their mathematical formulas are often tightly intertwined. Some groups can be
distinguished: (1) I, W, W3 , fE0 and (2) �A , ’ 5 . This allows to signi�cantly reduce the
number of variables. Another method often used to reduce the size of a statistical dataset
by discarding recent factors is principal component analysis (PCA). PCA is one of the
statistical methods of factor analysis. The goal of PCA is to rotate the coordinate system in
such away as to construct a new observation space inwhich themost variability is explained
by the initial factors. The PCA may be based on either a correlation matrix or a covariance
matrix constructed from the input set. When using a covariance matrix, the �elds in the
input set with the greatest variance have the greatest impact on the result. Here, since the
possessed variables di�er widely in terms of ranges, standardization is required before
calculating the PCs. The PCA reduction is performed to capture 95.0% explained variance.
The �rst four components cover that amount of explained variance (Fig. 6b) and they are:
W3 , �A , 5B , D2. Asmentioned before, using the expert consultations groups can be designated
by SFR. Applying this information to data allows we can designate groups for selected data.
The next step looked at the distribution of variables in individual groups (Fig. 6c). As can
be noticed in the graphs below, some variables have very similar distributions. These are
the highly correlated variables. Unfortunately, none of them separates the groups.

Fig. 6. Main results of exploratory analysis: a) correlation matrix for selected data. b) graph of
percentage of explained variance for individual components from PCA. c) the distribution of selected

variables divided into groups
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4.3. Selection of the classi�er

To examine a wide range of potential decision boundaries between individual classes, it
was decided to test six di�erent classi�cationmodels: k-nearest neighbors (KNN), quadratic
discriminant analysis (QDA) [16], support vector machine (SVM) [14], single classi�cation
tree, the random forest model [5] and simple neural networks. K-nearest neighbor classi�er
assigns the considered observation - = G based on a plurality of classes of K training
observations that are closest to the G. KNN is a completely non-parametricmethod,meaning
that no assumptions regarding the shape of decision boundaries are being made. Therefore
it should outperform many other methods when decision boundaries are highly non-linear.
The QDA method is a generalization of the LDA model, which was is on �nding linear
combinations of features introduced into the model, to distinguish the occurring classes
best way possible. But the LDAmethod assumes that observations from each of the classes
have a Gaussian distribution, with identical covariances, which severely limits its use in
the considered case. Therefore it was decided to use the QDA, being a generalization of
the LDA model, that can be used also when the assumption of equal covariance is not
met. Another model considered is the SVM, which enables enlarging the feature space by
using di�erent kernels. In this case, two di�erent kernels have been tested � linear and
radial (RBF � radial basis function). The possibility to select di�erent kernels and other
parameters makes the SVM model perform well in a variety of di�erent settings. Two
di�erent tree-based methods also have been tested. The �rst one is a single decision tree,
which tends to perform well in simple problems. Unfortunately, single, deep decision trees
very often tend to over�t the training data, especially when lots of input parameters are
considered. Thismeans, that despite often having great accuracy on the training dataset, they
tend to underperform on the new data. Additionally, single trees are often very non-robust,
meaning that relatively small changes in the training sample can greatly impact the �nal
estimated trees. The random forest model counteracts this phenomenon, by utilizing the
predictions from many di�erent trees. In the binary classi�cation problem, this means, that
each of the trees gives its prediction for the single observation, and then the �nal decision is
made based on the number of predictions assigning an observation to each class (majority
vote). Additionally, when building the decision trees, at each split only a random sample
of predictors is chosen as split candidates, which contributes to decorrelating the trees and
reducing the variance of the model. Finally, a simple neural network classi�cation model
has been considered in the article. The network structure consists of one dense layer with
recti�ed linear unit (ReLU) activation function. All of the models have been implemented
in Python programming language using the sklearn library.

4.4. Application to real data

After selecting the tested classi�ers, they are applied to the real data. Finally, the 4948
samples were taken from the �cohesive� class, and 3771 from �non-cohesive�. It should
be highlighted, that the groups are fairly evenly divided, so classi�ers can be trained and
tested right away. Table 5 shows the accuracy scores for selected classi�ers. Each of them
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was tested 10 times for a random training test set and then the average value of the statistic
was put into the table. Each of them used the variables I, �A , 5B and D2 for the classi�cation
task. After a series of trials, these variables were selected as the most informative.

Table 5. Accuracy score for selected classi�ers

Classi�er Nearest
Neighbors

Linear
SVM

RBF
SVM

Decision
Tree

Random
Forest

Neural
Net QDA

Accuracy score 0.858 0.645 0.822 0.701 0.729 0.663 0.660

Summing up, the best results were obtained for the Nearest Neighbors and RBF SVM
classi�ers, with the �rst being slightly better. A more in-depth analysis of the Nearest
Neighbor classi�er is provided in the next table.

Table 6 Summary of the precision, recall, F1 score for each class for chosen classi�er
(Nearest Neighbors)

Table 6. Accuracy score for selected classi�ers

Precision Recall F1 score Support

Cohesive 0.84 0.86 0.85 1112

Non-cohesive 0.86 0.84 0.85 1151

Accuracy � � 0.85 2263

Macro avg 0.85 0.85 0.85 2263

weighted avg 0.85 0.85 0.85 2263

Table 6 shows a summary of the precision, recall, F1 score for each class from the
one run. The report includes also the macro mean (unweighted average per label) and
weighted average (weighted average supporting per label). The development of the obtained
classi�er is planned to obtain more satisfying results. One of the considered approaches
is to build a classi�er based on the statistics from whole sample under the granulation
test. To determine the value of SFR, under the laboratory tests the sample about one meter
long should be taken, what corresponding at least 50 observation of the CPT parameters.
This number of samples is su�cient from the statistical point of view to calculate statistics
such as mean, median, or IQR. Above mentioned approach allows avoiding using repeating
observations of SFR corresponding to measurements collected from each 0.02 m of the
one�meter sample. It seems to be a promising solution, which can improve the accuracy
score and precision of the new classi�er.

5. Conclusions

The main purpose of TSF is the storage of post��otation waste. In practice, it is a huge
and complex technical object, which in the event of a geotechnical failure constitutes
a serious threat to the local environment and society. Due to the serious requirements
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for maintaining high stability indexes with a large safety margin, a dynamic increase in
monitoring and research in this �eld is observed. Unfortunately, in the case of large TSFs,
the amount of recorded data has reached a critical point from the perspective of processing
this data by geotechnical experts. The developing trend of IoT technology applications
made it possible to develop a cyber�physical system that can analyze this data in real�
time, estimate stability parameters, forecast risk, and further support the decision-making
process. The article presents the key scope of applications of machine learning algorithms
in estimating, among others, physical parameters of soil based on �eld tests. An example
is a ground classi�cation based on CPT surveys commonly known in natural soils. The
novelty is to develop such a classi�er for anthropogenic soils on the example of TSF. In this
regard, a validation procedure has been proposed and thorough correlation analysis has been
performed as well to recognize appropriate input vectors. In the next step, a comparative
analysis of the various classi�ers with their application to real data has been examined. The
obtained results were presented and discussed.
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System monitorowania stabilno–ci sk“adowiska odpadów
po�otacyjnych z wykorzystaniem zaawansowanej analizy big data

na przyk“adzie obiektu �elazny Most

S“owakluczowe: hydrotechnika, zbiornik po�otacyjny, eksploracja danych, analiza ryzyka, parame-
try wytrzyma“o–ciowe

Streszczenie:

W sk“adowisku odpadów po�otacyjnych KGHM�elaznyMost sk“aduje siƒ rocznie oko“o 30 mi-
lionów ton odpadów przeróbczych. Zajmuj¡cy powierzchniƒ prawie 1,6 tys. ha i otoczony zaporami
o “¡cznej d“ugo–ci 14 km i wysoko–ci na niektórych obszarach ponad 70 m, czyni go najwiƒkszym
zbiornikiem odpadów po�otacyjnych w Europie i drugim co do wielko–ci na –wiecie. Z oko“o
2900 urz¡dzeniami monitoruj¡cymi i punktami pomiarowymi otaczaj¡cymi obiekt, �elazny Most
jest przedmiotem ca“odobowego monitoringu, co ze wzglƒdów bezpiecze«stwa i ekonomicznych
ma kluczowe znaczenie nie tylko dla najbli»szego otoczenia obiektu, ale dla ca“ego regionu. Sie¢
monitoringu mo»na podzieli¢ na cztery g“ówne grupy: (a) geotechniczna, sk“adaj¡ca siƒ g“ównie
z inklinometrów i przetworników ci–nienia porowego VW, (b) hydrologiczna z piezometrami i mier-
nikami poziomu wody, (c) geodezyjne z pomiarami laserowymi i GPS oraz jako repery powierzch-
niowe i gruntowe, (d) sie¢ sejsmiczna, sk“adaj¡ca siƒ g“ównie ze stacji akcelerometrów. Oddzielnie
przeprowadza siƒ szereg ró»nych analiz chemicznych, równolegle z procesami spigotingu i mo-
nitorowaniem studni odci¡»aj¡cych. Prowadzi to do du»ej ilo–ci danych, które s¡ trudne do analizy
konwencjonalnymimetodami.W tym artykule omawiamy podej–cie oparte na uczeniumaszynowym,
które powinno poprawi¢ jako–¢ monitorowania i utrzymania takich obiektów. Przedstawiono prze-
gl¡d g“ównych algorytmów opracowanych do wyznaczania parametrów stateczno–ci lub klasy�kacji
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odpadów. Do analizy i klasy�kacji odpadów wykorzystano pomiary z testów CPTU. Klasy�kacja
gruntów naturalnych z wykorzystaniem bada« CPT jest powszechnie stosowana, nowo–ci¡ jest zasto-
sowanie podobnej metody do klasy�kacji odpadów na przyk“adzie zbiornika po�otacyjnego. Analiza
eksploracyjna pozwoli“a na wskazanie najistotniejszych parametrów dla modelu. Do klasy�kacji wy-
korzystano wybrane modele uczenia maszynowego: k najbli»szych s¡siadów, SVM, RBF SVM,
drzewo decyzyjne, las losowy, sieci neuronowe, QDA, które porównano w celu wytypowania najsku-
teczniejszego. Koncepcje opisane w tym artykule bƒd¡ dalej rozwijane w projekcie IlluMINEation
(H2020).
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