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Abstract— This article proposes a robust and scalable cluster-
ing method for 3D point-cloud plane segmentation with appli-
cations in Micro Aerial Vehicles (MAVs), such as Simultaneous
Localization and Mapping (SLAM), collision avoidance, and
object detection. Our approach builds on the sparse subspace
clustering framework, which seeks a collection of subspaces
that fit the data. Since subspace clustering requires solving a
global sparse representation problem and forming a similarity
graph, its high computational complexity is known to be a
significant drawback, and performance is sensitive to a few
hyperparameters. To tackle these challenges, our method has
two key ingredients. We use randomized sampling to accelerate
subspace clustering by solving a reduced optimization problem.
We also analyze the obtained segmentation for quality assur-
ance and performing a post-processing process to resolve two
forms of model mismatch. We present numerical experiments
to demonstrate the benefits and merits of our method.

Index Terms— Subspace clustering, MAVs, robotics, plane
segmentation, computational efficiency

I. INTRODUCTION

Recent advances in sensing devices and the increase in
computational power have led to the extensive use of depth
cameras and 3D sensors in various robotics applications, such
as Simultaneous Localization and Mapping (SLAM) [1], [2],
urban areas and infrastructure 3D reconstructions with Micro
Aerial Vehicles (MAVs) [3], [4], 3D object detection [5], path
planning, and collision avoidance for the MAVs [6], [7], [8].
However, the obtained 3D point clouds from sensing devices
are usually large-scale, noisy, redundant, and do not provide
sufficient scene semantics. Thus, it is necessary to reduce the
data size and extract meaningful information.

Detecting planar segments in a point cloud has played
an essential role in providing useful representations in au-
tonomous MAVs. In indoor environments, for instance, ceil-
ings, floors, walls, and surfaces are planar. Also, in outdoor
scenes, the ground is typically piecewise planar. The horizon-
tal planes are used as a support for other objects (such as pick
and place of objects with manipulators) or traversable terrain
for robots. Vertical planes are usually considered as obstacles
or walls, which are critical for autonomous navigation of
aerial robots. The obtained information regarding planes can
be also directly used in SLAM. However, an inaccurate plane
segmentation will have dramatic consequences on the quality
of a MAVs mission. Examples include drift in localization,
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collision of the platform, imprecise path planning, or drop-
ping objects in incorrect surface areas.

While the task of plane detection has received signifi-
cant attention over the last years, most research relies on
organized point clouds, such as RGB-D images [9], where
the neighbor information can be used. However, extracting
planes from unorganized point clouds is more challenging
because of the cloud size variations, which means that the
neighbor information cannot be immediately used [10].

In this paper, we propose a novel method for the task
of plane segmentation in unorganized point clouds based on
subspace clustering, a generalization of Principal Component
Analysis (PCA). Subspace clustering assumes the Union of
Subspaces (UoS) model for analyzing a set of unlabeled data
points, where the goal is to recover subspaces by assigning
each point to its corresponding subspace. Among various
techniques [11], the state-of-the-art subspace clustering uses
the self-expressiveness property [12]. That is, each data point
in a UoS model can be expressed as a linear combination of
other points from its own subspace.

After solving a sparse representation problem for all
data points, one forms a similarity graph and partitions the
original data points using the normalized cut algorithm [13].
While the high computational complexity of this technique
is known to be a significant challenge, we bring the focus
into another critical issue in this article. Unfortunately, false
connections in similarity graphs may lead to imprecise
clustering of a small portion of the data. Existing clustering
quality metrics are not useful in our problem of interest
because the erroneous assignment of even a few points does
not allow us to characterize worst-case results regarding the
estimated subspaces.

A. Background and Motivation

In the literature, plane segmentation has been extensively
investigated, and we present a brief overview. These meth-
ods can be divided into three main categories. (a) Point
clustering, based on similarities between the measurements
such as distance and angle between surface normal [14].
In [15], the points are clustered into super voxels, and
based on an adjacency graph the regions are clustered. The
authors in [16] proposed to cluster data points with similar
normals. (b) Region growing, where the method chooses
seed points or regions, and cluster the points based on that
information. In [17], an initial set of candidates are produced,
then extracted a regular arrangement of planes with their
relations. The authors in [18] proposed fast segmentation
of 3D point clouds for autonomous vehicles. This method
extracts a set of seed points based on low height values
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(a) 3D point cloud (b) segmentation (a few outliers) (c) segmentation (connected planes)

Fig. 1: Illustrating two types of clustering imperfections when applying subspace clustering to a 3D point cloud in (a). We
see a small set of points lying outside the plane in (b) and the two connected planes are identified as one cluster in (c).
Existing subspace clustering methods are not able to identify these erroneous cases without the knowledge of ground-truth
labels.

to estimate the ground surface and then extract the points
close to initial ground plane. (c) Random sample consensus
(RANSAC)-based plane fitting where points from the point
cloud are sampled, and planar models are fitted to them.
In [19], a RANSAC method was proposed for performing
normal coherence check on points and removed the data
points whose normal directions were contradictory to the
fitted plane.

While most research has focused on designing scalable
subspace clustering methods, a critical question is left unan-
swered regarding the accuracy of representing each data
point in a UoS model. To be formal, ensuring that each data
point selects others points from its own subspace requires
tuning a regularization parameter, and also depends on other
factors such as the number of samples in each subspace
(e.g., see [20]). Hence, false connections in the similarity
graph constructed from such sparse representations may
lead to imprecise assignments, which is problematic for
plane segmentation from 3D point clouds. For example, in
Figure 1, we exhibit two forms of clustering imperfections
that we observed by running subspace clustering multiple
times on a 3D point cloud. We will present a post-processing
mechanism to determine whether each obtained segmentation
is valid. When we find out a segmentation does not reflect
the structure of a plane, we propose to remove outliers and
partition connected planes to improve the performance of
subspace clustering.

B. Contributions

To improve both scalability and robustness of subspace
clustering, our main contributions are twofold. First, we
show how randomized sampling reduces the computational
cost of subspace clustering. Second, to the best of our
knowledge, our method is the first line of work in the
context of subspace clustering that aims to measure the
quality of clustering without the knowledge of ground-truth
labels, which are typically assumed to be a priori known
in the previous research. Moreover, our method takes the
first step towards designing post-processing mechanisms to
improve the quality of assignments by removing outliers

and partitioning connected subspaces. The proposed method
is valuable in robotics since it can be used in closed-loop
for controlling robot actions, as ignoring inaccurate plane
segmentation is a better policy than robot actions, which may
fail a mission with dramatic consequences.

C. Outline

The rest of the article is structured as follows. Section II
presents our proposed methodology for identifying the num-
ber of planes and evaluation metrics. Then, in Section III, we
evaluate the proposed method on various simulated and real-
world data sets. Finally, Section IV concludes this article by
summarizing our findings and offering some future research
directions to improve our framework further.

II. SEGMENTATION OF 3D POINT CLOUD

This section explains the proposed subspace clustering
method along with our new post-processing strategy. Sup-
pose that the obtained 3D point cloud consists of n points,
i.e., P = {(xi, yi, zi)}ni=1, then we will form a data matrix
X = [x1, . . . ,xn] ∈ R3×n by representing each data point
as a column vector. As mentioned before, these points are
drawn from the UoS model in R3, so we can express each
point as a sparse linear combination of all the other data
points.

Subspace clustering techniques aim to partition the data
into multiple clusters and fit each partition or cluster with
a low-dimensional subspace, such as a 2D surface in our
problem of interest. An effective approach [11] to subspace
clustering relies on solving the following optimization prob-
lem:

min
cj∈Rn

‖cj‖1 +
λ

2
‖xj −

∑
i 6=j

cijxi‖22 s.t. cTj 1n = 1, (1)

where ‖ · ‖q represents the `q norm for vectors, λ is a reg-
ularization parameter, cj = [c1j , . . . , cnj ]

T is the coefficient
vector corresponding to xj , and 1n is the vector of all ones.
The constraint i 6= j avoids the trivial solution of expressing
xj via itself, and the constraint cTj 1n = 1 allows us to extract
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the general case of affine subspaces. This is crucial because
subspaces do not necessarily pass through the origin.

The above optimization problem can be cast in a more
concise form for the entire data set, i.e., xj , j = 1, . . . , n:

min
C∈Rn×n

‖C‖1 +
λ

2
‖X−XC‖2F (2a)

s.t. diag(C) = 0n, CT1n = 1n, (2b)

where ‖C‖1 =
∑

i,j |cij |, ‖C‖2F =
∑

i,j c
2
ij , and diag(C)

is the vector of the diagonal elements of C. After solving
the above optimization problem and finding the coefficient
matrix C = [c1, . . . , cn], the next step is to find the
segmentation of the data into multiple subspaces. Towards
this goal, subspace clustering methods build a weighted
graph with n nodes corresponding to the n original points,
and its similarity matrix is defined as W = |C|+ |C|T . That
final step involves applying the normalized cut algorithm [13]
to W for partitioning.

To be formal, we form the normalized graph Laplacian
matrix L = In −D−1/2WD−1/2, where D is the diagonal
degree matrix. Then, the K eigenvectors v1, . . . ,vK ∈ Rn

corresponding to the K smallest eigenvalues of L are found
(K represents the number of clusters). The last step of spec-
tral clustering is to perform K-means clustering [21] on the
rows of the matrix V = [v1, . . . ,vK ] ∈ Rn×K to cluster the
original data (one can normalize the rows before clustering).
The optimization problem in (2) can be solved using the
Alternating Direction Method of Multipliers (ADMM) [22],
which scales poorly with the data size. The computational
cost of existing implementations is cubic or quadratic in
terms of the number of data points [23]. Moreover, one
has to form various n-dimensional square matrices (e.g.,
C and W) that will lead to high memory usage. Hence,
existing subspace clustering methods are not appropriate for
our problem of interest due to time constraints. We address
these problems by introducing a scalable subspace clustering
technique.

The high computational cost of constructing the coefficient
matrix originates from computing a regularized representa-
tion of every single data point with respect to the whole
dataset. Thus, the first step of our approach involves forming
two subsets of the original data by uniform sampling without
replacement. Although we can use more sophisticated non-
uniform sampling techniques, such as [20], we decide to
use uniform sampling because our post-processing step will
allow us to improve the clustering performance if required.
We also eliminate the constraint CT1n = 1n by mapping
the original data from R3 to R4. This trick is known as
homogeneous embedding [24], where we add a new coor-
dinate which is 1 (or another constant) to each point, i.e.,
P = {(xi, yi, zi, 1)}ni=1.

Given two sampling parameters 0 < κ1 < κ2 < 0.5, we
create two sets of indices I1 and I2 with n1 = bκ1nc and
n2 = bκ2nc elements from {1, . . . , n} selected uniformly at
random, respectively. Then, we seek to solve the following
sparse representation problem for each xj , j ∈ I2:

min
cj∈Rn1

‖cj‖1 +
λ

2
‖xj −

∑
i∈I1

cijxi‖22. (3)

The above optimization problem does not return a trivial
solution because I1∩I2 = ∅, and it can be solved efficiently
using the SPArse Modeling Software (SPAMS) package [25].

After solving the new optimization problem, we should
apply the normalized cut algorithm to the obtained coefficient
matrix C = [c1, . . . , cn2

]. However, the matrix C is not
square anymore because n1 6= n2, and we often want n1 to
be much smaller than n2 to reduce the computational cost.

To tackle this problem, we implicitly form the similarity
matrix W = C̃T C̃ ∈ Rn2×n2 , where C̃ = |C|. Next,
we present an efficient approach to perform normalized cut
using the new similarity matrix. First, note that the degree
matrix can be computed without forming any n× n matrix.
In particular, we find the i-th element of D as follows:

n2∑
j=1

wij =

n2∑
j=1

c̃Ti c̃j = c̃Ti η = c̃i · η, (4)

where η =
∑n2

j=1 c̃j ∈ Rn1 . Thus, we compute the diagonal
degree matrix D using n2 scalar products.

The remaining task is to compute the K smallest eigenvec-
tors of the graph Laplacian matrix. We can reduce the com-
putational cost and memory usage of this step by computing
the top K eigenvectors of In − L = D−1/2WD−1/2. Let
UΣPT be the singular value decomposition of C̃D−1/2 ∈
Rn1×n2 , where U ∈ Rn1×r (left singular vectors), P ∈
Rn2×r (right singular vectors), Σ contains the singular
values, and r is the rank parameter. Then, the top K
eigenvectors of D−1/2WD−1/2 are equivalent to the top
K right singular vectors of C̃D−1/2 since we have [26]:

D−1/2WD−1/2 = (UΣPT )T (UΣPT ) = PΣ2PT . (5)

After computing the top eigenvectors and performing K-
means clustering, we obtain the segmentation of the data
points indexed by I2. Note that a significant advantage of
using the normalized cut algorithm for clustering is that we
can infer the number of clusters K. We use the multiplicity
of singular value 1 in (5) to estimate the number of connected
components because we are using the spectral decomposition
of In − L, instead of the Laplacian matrix L.

The majority of existing works use the knowledge of
ground-truth labels to evaluate the performance of subspace
clustering, such as clustering accuracy or normalized mutual
information [27]. The evaluation step is critical because
there are various parameters that have to be tuned, including
the regularization parameter λ, and sampling parameters κ1
and κ2. However, in many applications such as autonomous
systems, the information concerning labels is not readily
available. Thus, we propose a simple technique to determine
whether each cluster is valid. Towards this goal, we perform
PCA on each cluster by subtracting the mean and computing
the singular value decomposition of the centered data. As
we are looking for 2D surfaces, we define a threshold γ to
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(a) removing few outliers (b) partitioning a segmentation into two surfaces

Fig. 2: Demonstrating the performance of our post-processing step on resolving two types of clustering imperfection shown
in Figure 1. In (a), we remove those points lying outside the 2D surface in sub-figure 1(b). Also, in (b), we partition the
obtained segmentation, shown in sub-figure 1(c), into two surfaces.

understand the distribution of points in each cluster. To be
formal, when σ1/σ3 > γ, where σ1 and σ3 are the largest
and smallest singular values in each cluster, then we accept
the cluster as a 2D surface (γ = 10 in this work).

The next task is to devise a strategy to resolve two main
forms of clustering imperfections (illustrated in Figure 1), so
we do not have to repeat subspace clustering from scratch.
In the first case, consider a cluster that consists of a 2D
surface and a few data points lying outside this surface. We
propose to use the Local Outlier Factor (LOF) algorithm [28]
for filtering the segmentation by removing those points lying
outside the surface. LOF is an unsupervised learning method
that identifies anomalous data points by measuring the local
deviation of a given data point with respect to its neighbors.

Another form of clustering imperfection relates to clus-
ters that consist of two or more connected 2D surfaces
as one of the main challenges in subspace clustering is
to separate points near the intersections. We propose to
use the normalized cut algorithm with a similarity function
obtained using the Gaussian kernel function of the form
κ(xi,xj) = exp(−β‖xi − xj‖22), where β > 0 is the
bandwidth parameter. This step enables partitioning each
cluster for the second time if needed. Using the same strategy
we discussed before, we can perform PCA to validate each
sub-cluster, i.e., we measure the rank of centered points in
each sub-cluster.

A potential drawback of the above approach is that we may
segment a 2D surface into two parts. To avoid this issue, we
use a measure of correlation between subspaces, known as
subspace affinity. To be formal, this measure is defined as
aff(S1,S2) = 1√

2
‖HT

1 H2‖F , where S1 and S2 are the two
obtained surfaces in our application (we consider 2D surfaces
in this work). Also, H1,H2 ∈ R3×2 are corresponding
orthonormal bases. The subspace affinity is between 0 and 1;
aff(S1,S2) = 0 indicates the subspaces are orthogonal and
aff(S1,S2) = 1 means that the two subspaces are identical.
Hence, we can use this measure to ensure that our method
does not partition a 2D surface into two components.

Finally, we exemplify how our post-processing step can
resolve some of the issues associated with subspace cluster-

ing. In Figure 2, we consider the same setup as in Figure 1.
The overall approach is summarized in Figure 3.

Fig. 3: Block diagram of the overall proposed scheme.

III. RESULTS

To evaluate the performance of the proposed method,
initially, the Gazebo [29] robot simulator is used. For this
purpose, the quad-copter is equipped with the 3D lidar
Velodyne VLP-16 and the method is evaluated with different
environments, while the measurement of 3D lidar is used.
Furthermore, the data-set collected from the MAV navigation
equipped with 3D lidar in Sweden underground tunnel is
used for the experimental evaluation of the proposed method.
The proposed method has been developed in Python within
the ROS1 framework.

A. Plane segmentation

Figure 4 depicts the results of plane segmentation in
different scenarios exhibiting complex environments. The
quad-copter is located in the center of the point cloud.

1https://www.ros.org/
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Fig. 4: The extracted surfaces from various 3D point clouds in different scenarios based on the proposed segmentation
method, each cluster is indicated with a different color. Best viewed in color.
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Trajectory without verification step
Trajectory with verifaction steps
Sparse map of the environment

Fig. 5: The trajectory of the MAV during navigation in the
confined environment, while the way-points sets to [0, 0, 1]>

for x, y, and z axes respectively.

The environments are inspired by human-made structures
such as closed areas, corridors, and junctions. The mean
and maximum of running times for our plane segmentation
method are 0.01 sec and 0.2 sec, respectively (standard sub-
space clustering takes at least a few seconds).

B. Navigation in confined environment

This scenario considers the integration of the proposed
surface extraction method for the case of MAV navigation in
confined environments. More specifically, a Nonlinear Model
Predictive Control (NMPC) scheme is employed to generate
the proper commands for the MAV system, while incor-
porating plane constraints for obstacle avoidance purposes.
Thus, in the performed simulations, the proposed method
is related to the avoidance task and provides the extracted
plane coefficients to the control scheme in closed loop flights.
In this scenario, a confined environment with no entry/exit
is chosen to evaluate the performance of the method with
and without the verification steps.The MAV takes off from
the ground and follows the way-point reference located at
[0, 0, 1]> for x, y, and z axes correspondingly. The extracted
planes are used in the controller of the MAV for collision
avoidance, while we define safety distance of 1[m] from

all extracted planes. The focus of these simulations is to
highlight the necessity of the verification steps and the effect
on the performance of the MAV navigation.

Two scenarios are considered one with and one without
verification steps, while in both cases the collision avoidance
constraints are active for the controller. Figure 5 depicts the
trajectory of the MAV in each scenario. This Figure shows
that the MAV for the majority of the simulation run hovers
close to the desired location when the verification steps are
enabled, compared to the other case where it oscillates more.

C. 3D lidar data-set from underground tunnels

In this case, the MAV navigates in underground tunnel
and void environments located in Sweden [30], [31], while
equipped with a Puck LITE Velodyne Lidar. The collected
data-sets from the 3D lidar are post processed offline using
the proposed method to extract surfaces, where different
areas with different structures are used for the evaluation.
Figure 6 depicts the resulting extracted surfaces from the
3D point clouds using the proposed method, while Figure 7
shows the images from the looking forward camera in the
environment.

IV. CONCLUSION

In this paper, we present a robust subspace clustering for
identifying planar segments. Notably, our approach can au-
tomatically examine the quality of recovered planes and take
a few steps to improve the quality of obtained segmentation.
In the future, we will work on improving our post-processing
step to resolve other variants of clustering imperfections,
which will increase the generality and reliability of our
approach.
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