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Abstract— This article proposes a novel strategy for detecting
humans in harsh Sub-terranean (SubT) environments, with
a thermal camera mounted on an aerial platform, based on
the AlexNet Convolutional Neural Network (CNN). A transfer
learning framework will be utilized for detecting the humans,
where the aerial thermal images are fed to the trained network,
which binary classifies them image content into two categories:
a) human, and b) no human. Moreover, the AlexNet based
framework is compared with two related popular CNN ap-
proaches as the GoogleNet and the Inception3Net. The efficacy
of the proposed scheme has been experimentally evaluated
through multiple data-sets, collected from a FLIR thermal
camera during flights on an underground mining environment,
fully demonstrating the performance and merits of the proposed
module.

I. INTRODUCTION

The continuous development of robotic technologies is
constantly increasing the number of real life and mission
oriented deployments of these technologies, in a variety
of environments and of different complexity. Among the
latest major trends in the robotics community is the focus
on demonstrating resilient and robust autonomy in Subter-
ranean (SubT) environments, as for example the case of
the DARPA Sub-T competition [1]. In such applications,
one of the main challenge and real requirement for the
robotic autonomy frameworks, is the ability to ensure a
safe and robust navigation of the robotic platforms, while
operating in a priori known, spatially or completely un-
known environments. Except from the fundamental problems
of localisation, navigation and mapping, additional feaures
towards realistic missions should be added. As such, the
missions for search and rescue are gaining lately a massive
attention, especially for cases of operations in hostile envi-
ronments, such as mining tunnels [2], [3]. In such search
and rescue missions, a visible light camera is the commonly
selected perception sensor. However, the quality of the visual
information may significantly degrade, while working at dark
environments and as such, there have been presented various
lightning strategies to guaranty proper illumination of the
environment [4]. Recently, there is a large trend to equip
the robots with thermal cameras [5] that have the ability to
perceive visual information in the dark environment and as
such, increasing the overall environment perception for the
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autonomy navigation itself but also to introduce new features
in the overall mission, as for example the case of search and
rescue for humans and survivors [4].

Few works have addressed the task of human detection
with a thermal camera [5]. In [6], the authors presented
an approach that allows detecting humans in a real-world
outdoor environment using a thermal and a visible light
camera. However, the performance of this technique depends
on the high video processing rate in order to find all
the potential objects, while the method was experimentally
evaluated only during the day time conditions. Another
method to discover humans with a thermal cameras was
presented in [7]. The human detection algorithm begins
with a static analysis through the classical image processing
approach and in the sequel, the dynamic image analysis
follows. Finally, the outcome of these two stages is compared
in order to achieve better human detection, however, this
approach requires an approximate image alignment. The
authors in [8] presented a trespasser detection method, which
utilized pattern recognition techniques to distinguish humans.
The proposed algorithm was experimentally evaluated during
the day time conditions and only in an urban environment.

For the general detection of humans, the study [9] ad-
dressed the faint detection among elderly people, patients
or pregnant women. The proposed faint detection algorithm
utilized a thermal camera and could work in both indoor
and outdoor conditions. However, it needs to be improved in
order to distinguish humans from animals. In the study [10],
the authors presented a new algorithm for human detection
with a thermal camera. In their approach, the thresholds
for generating the binarized image difference, between the
input and the background reference images, could be adap-
tively calculated by using the information obtained from
the background image and differential values between the
background and input image, based on fuzzy systems. But,
similarly to the previous study [9], the animals can be
faulty detected as humans. The authors in [11] proposed a
human silhouettes extraction from thermal and visible light
cameras. The matching method optimization problem was
solved with the use of a hierarchical genetic algorithm, where
the underlying experiments have indicated good results in
day time conditions but the method’s accuracy may decrease
in the low light. In another study in [12] a multi-spectral
pedestrian data-set that contained both thermal and visible
light camera images was proposed and evaluated through
multi-spectral extension of aggregated channel features. The
authors in [13] presented a human detection method for
thermal camera that focuses on the combination of the pixel-
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gradient and body parts processing, also in a three-stage
classification process, which has been proposed to reduce
the false detection, however, still this method cannot detect
groups of overlapped people.

A common disadvantage of all the previous mentioned
methods is that none of them was evaluated in harsh environ-
mental conditions, while there are few works that addressed
the task of human detection in challenging environments.
In [14], the authors’ goal was to maximize the situational
awareness of the firefighters. To achieve this, a CNN VGG16,
coupled with a thermal camera, was used. The test re-
sults showed a performance that exceeds a classification
probability above 95% in all the classifications when the
configuration had 4 layers of convolutional sections. The
authors in [15] introduced a human detection algorithm
in underground mines and their experiments presented a
neural network classifier shows reasonable performance and
accuracy.

The main contribution of this work is the implementation
of a vision based approach for human detection with an
aerial thermal camera. Unlike other studies, the proposed
system solves the image classification task through a fine
tuning AlexNet [16] with transfer learning [17], adding new
classification categories. The proposed method is generic
and can be applied to any thermal camera with reasonable
resolution for a real-time humans’ detection. Additionally,
the proposed method was trained through an open access
pedestrian data-set and evaluated using a data-set captured
in an underground environment. Finally, the proposed frame-
work has been also compared with other two popular CNNss,
namely the GoogleNet and the Inceptionv3Net for overall
benchmarking purposed.

The rest of the article is structured as it follows. Initially,
Section II presents the AlexNet architecture and the transfer
learning solution, while Section III presents the collected
data-set, the network training and its successful evaluation
results, including the comparison studies. Finally, the con-
clusions are drawn in Section IV.

II. ALEXNET FOR HUMAN DETECTION

In the present article, the overall framework for the visual
object recognition utilises a well-known CNN method in [18]
called AlexNet [19]. Thus, the section initially provides a
brief description of the AlexNet framework, while in the
sequel the concept of transfer learning is explained.

A. AlexNet

AlexNet [20] is one of the most widely used CNN meth-
ods [21] for image classification. It has in total 60 million
parameters, 650.000 neurons, contains 5 convolutional layers
and allows to classify images in 1000 different class labels.
Therefore, a big data-set is needed for its training and in
this article the transfer learning method is chosen due to
the limited availability of the thermal imagery data-sets of
humans in the SubT environments.

In the presented approach, the AlexNet input is an Red,
Green and Blue (RGB) image from a thermal camera with
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a fixed size of 227 x 227 x 3 pixels, that is subsequently
followed with a 11 x 11 2D convolution layer with an
output size of 55 x 55 x 96. The overall proposed AlexNet
architecture is presented in Figure 1.
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Fig. 1: AlexNet architecture and the transfer learning method.

After this initial stage, there is a 2D Max pooling layer of
3 x 3 and a 27 x 27 x 96 output, followed by 2-dimensional
convolution layers of 5 X 5 and an output of 27 x 27 x 256.
In the continuation, there is also another max pooling layer
of size 3 x 3 and with an output size of 13 x 13 x 256, which
runs through 2D convolution layers of 3 x 3 with an output
of the same size. After that, another 3 x 3 2-dimensional
convolution layer with an output size of 13 x 13 x 256,
is followed by a 3 x 3 max pool with an output size of
6 x 6 x 256. This output goes via two fully connected layers
and the latter results are fed into a 1000 class label softmax
classifier. To sum it up, AlexNet is made of eight layers,
five of which are convolutional layers and three of those
are fully connected layers. The first two convolutional layers
are followed by an Overlapping Max Pooling layer. The
remained three convolution layers (third, fourth, and fifth)
are directly linked together. Eventually, an Overlapping Max
Pooling layer is followed by the last convolution layer (fifth).

Max pooling layers are usually used in CNNs in order
to reduce the size of the matrices, while keeping the depth
the same. On the other hand, overlapping max pooling uses
an adjacent window, which overlaps each other in order to
compute the max element from a window each time. It has
been proven that this kind of max pooling reduces the top-1
and top-5 error rates [20], an approach that has been followed
in this article as well.

One of the main aspects of the AlexNet is the use of the
Rectified Linear Unit (ReLU) [22]. The authors [20] proved
that by using the ReLU nonlinearity, AlexNet could be
trained a lot quicker than using classical activation functions
like sigmoid or tanh [23], where their hypothesis have been
tested on the CIFAR-10 data-set [24] and the ReLU-AlexNet
achieved the same performance (25% training error) with the
Tanh-AlexNet in one sixth of the epochs.

B. Transfer Learning

Transfer learning [22], [25] for CNNs is commonly re-
ferred to as the method of applying a previously trained
CNN in another data-set, where the number of classes to
be identified is different from the initial data-set, because it
was used in different tasks and with different data-sets. There
are two major methods for Transfer Learning, both of which
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use the same AlexNet weights on the ImageNet database
images [26]. In the first approach, the CNN is considered
as a feature extractor, while the last fully connected layer
is removed. In the sequel, the features that were extracted
from the trained AlexNet can be used to train a classifier
similar to [27] in the new data-set. In the second approach,
the last connected layer is replaced and later the entire CNN
is retrained for the new data-set so that the trained weights
are fine tuned.

In the present article, we are proposing the replacing of
the last three layers that are configured for 1000 categories
(Figure 1) with fully connected layer, softmax layer and
classification output layer, of the AlexNet network and fine-
tune them to our desired two classes (human, no human).
This approach allows accurate classification based on the
detected features, while reusing previously trained network
layers.

III. EXPERIMENTAL RESULTS

In this Section, the aerial platform utilized in the acquired
experimental results will be described, including additional
information for the placement of the camera and the overall
concept targeting UAVs. Furthermore, the description of
the Advanced Driver-Assistance Systems (ADAS) data-set,
provided by FLIR, will be presented, which was used for
the network training, as well as the experimentally collected
data-sets from the Swedish underground tunnels for the
CNN evaluation. Finally, the overall training approach will
be presented, extended with a discussion on the evaluation
results.

A. The Aerial Platform

The evaluation of the proposed method has been per-
formed on data collected from the onboard thermal camera
of a UAV navigating along an underground tunnel. The
aerial platform is a custom build quadrotor developed at
Lulea University of Technology. It carries the AfroFlight
Naze 32 Rev6 Flight Controller Unit (FCU), running the
ROS-Flight embedded autopilot software [28]. Moreover,
it weights 1.5kg and it is powered using a 4-cell 1.5hA
LiPo battery which provides around 10 minutes of flight.
The processing unit of the platform is the Aaeon UP-
Board with the processor Intel Atom x5-Z8350 and 4GB of
RAM memory, running Ubuntu 18.04, while all autonomy
capabilities have been developed within the Robot Operating
System (ROS). The sensor suite of the platform includes, 1)
the Prophesse thermal camera Gen3M VGA-CD 1.1 with 70°
Field of View (FOV) at 30fps placed in the front part of the
vehicle, 2) the PX4Flow optical flow sensor faced towards
the ground and is used for velocity estimation on x, y axes,
3) the Lidar Lite v3 single beam lidar facing towards the
ground for altitude information and 4) the Rplidar S1, a 2D
Time of Flight (TOF) Laser Range Scanner placed on top
of the platform main body for extracting 2D information
from the surrounding environment used in the autonomy
capabilities of the platform. The underground areas are pitch
dark, thus the platform is equipped with two 10 W LED
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Fig. 2: The aerial platform before take-off at the underground
tunnel

light bars placed in the quadrotor arms for additional source
of illumination. Figure 2 depicts the aerial platform with the
sensor suite.

The presented quadrotor is considered an aerial scout
resource constrained platform for fast deployment and au-
tonomous navigation in underground complex areas. The
thermal camera payload allows to collect information of the
visited areas based on their thermal signature and detect
humans in the context of search and rescue missions, using
the proposed method.

B. FLIR ADAS Thermal Data-set

In the transfer learning approach of the pre-trained
AlexNet, it was utilized the ADAS data-set that allows to
detect and classify walking and cycling persons, dogs and
vehicles in challenging conditions including total darkness,
fog, smoke, inclement weather and glare [29]. The data-
set was recorded with a FLIR Tau2 camera, operated at
30fps and with a resolution of 640 x 512 pixels. In our
case, Figure 3 depicts an example of the extracted images
from the training data-set. The second data-set is collected
from Luled Sweden underground mining tunnels that was
collected from an aerial flight with a FLIR Boson 640
camera, a resolution of 640 x 512 pixels and a frame
rate of 60fps. Figure 4 present a snapshot of the aerial
platform utilized for gathering the data sets suring a full
autonomous mission. In this frame, the thermal camera view
is also depicted in the bottom right, while a full video of
one of the missions can be reached to the following link
https://youtu.be/OgvXjWbPLOA.

Since the thermal camera resolution is significantly lower
than the visible light has, the acquired images were not
down-sampled or cropped. Table I shows the total number of
images that were extracted from the data-set, while Figure 7
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Fig. 3: Examples of the extracted images from the FLIR
ADAS data-set in the case of a human detection. The images
are extracted while the camera approaches to the human.

illustrates several images collected for the human detection
in the underground tunnel.

TABLE I: The number of extracted images for each category
from the training and the validation data-sets, while the
redundant images are excluded.

human | no humans
FLIR ADAS data-set 79 174
Sweden tunnels data-set 169 68

In the continuation, the data-set is categorized manually
into two classes of human and no human for the training and
evaluation stages.

C. Training and the Evaluation

The FLIR ADAS data-set was used for training the
AlexNet, while the Luled Sweden underground tunnels data-
set is used for the validation of the network. Additionally, the
images acquired from the FLIR ADAS data-set were resized
to 227 x 227 x 3 pixels. The CNN was trained on a laptop
equipped with an Nvidia MX 150 GPU. The training param-
eters were: mini-batch size of 10, maximum number epochs
of 6, initial learning rate of 1074 As a solving method, the
stochastic gradient descent [30] with a momentum optimizer
was used. The trained AlexNet network has a 100% accuracy
on the training data-set, while the accuracy on the validation
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data-set was equal to 98.73%, which is a solid result given
the size of the dataset. The outcome of the CNN training,
with the corresponding accuracy and loss, while training
and validation of the data-set, is depicted in Figure 5. For
the classification, the loss function was defined as a cross-
entropy loss [22], [31].

Furthermore, Figure 6 shows the confusion matrix of
the validation data-set, where the rows from the validation
data-set correspond to the predicted class and the columns
refer to the actual class of the data-set. The diagonal cells
show the number and percentage of the trained CNN’s
proper classifications. For example, 71 images are correctly
categorized in the first diagonal into the category human,
which corresponds to 31.1 percent of the total number of
images. Likewise, 157 instances are correctly classified as
no humans, corresponding to 68.9% of the entire validation
data-set. In addition, the off-diagonal cells correspond to
wrongly labelled results, leading to a 0.0% error. Addition-
ally, the right gray column indicates the percentages of all
the images that are expected to belong to each class that
are correctly and faulty categorized. From the other hand,
the bottom row displays the percentages of all the examples
belonging to each class, which are listed correctly and faulty.
The cell located in the plot’s bottom right indicates the
overall precision. Overall, 100.0% of predictions were right,
and 0.0% were incorrect.

Additionally, the obtained results from AlexNet were
compared against two other pre-trained networks, namely
the GoogleNet [32] and the Inceptionv3Net [33], while the
comparison is depicted in Table II. As it can be seen from
this Table, the validation accuracy for GoogleNet is lower,
while for the Inception3Net it is significantly lower. It is
estimated, that such a result comes due to the larger amount
of the convolutional layers in these two networks and the
fact that GoogleNet and Inception3Net require larger data-
sets. The validation loss indicates that the AlexNet classifier
has better performance in modelling relationship between
network training and validation sets.

TABLE II: The comparison of transfer learning performance
between AlexNet, GoogleNet, and Inceptionv3Net.

AlexNet | GoogleNet | Inceptionv3Net
Training Time [sec] 186 265 2012
Training Accuracy 100% 100% 100%
Validation Accuracy | 98.73% 77.64% 29.11%
Training Loss 0.0036 0.008 0.17
Validation Loss 0.041 0.51 1.04

IV. CONCLUSIONS

This work proposed a novel framework based on CNN for
detecting humans in SubT environments. The main focus of
the developed framework is to provide a generic solution
that has a reduced computational cost and a very good
performance for detecting humans, while relying only on
a thermal camera video stream. The AlexNet CNN has
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Thermal camera

Fig. 4: UAV performing a full autonomous search and rescue mission, based on an onboard thermal camera video feed

https://youtu.be/OgvXjWbPLOA.
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Fig. 5: Accuracy and loss of the AlexNet network on training
and validation the data-sets.

been trained through a transfer learning approach, mainly
for tackling the issue of limited training data-set availability,
from real underground environments. The thermal images
are fed to the network, which classifies into two categories:
human and no human. The method has been validated by
using data-sets collected from autonomous flying missions at
real underground environments, while the overall efficiencly
of the proposed approach has been presented and compared
with other similar training techniques.
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