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Abstract: Autonomous navigation of robots in harsh and GPS denied subterranean (SubT)
environments with lack of natural or poor illumination is a challenging task that fosters the
development of algorithms for pose estimation and mapping. Inspired by the need for real-life
deployment of autonomous robots in such environments, this article presents an experimental
comparative study of 3D SLAM algorithms. The study focuses on state-of-the-art Lidar SLAM
algorithms with open-source implementation that are i) lidar-only like BLAM, LOAM, A-
LOAM, ISC-LOAM and hdl graph slam, or ii) lidar-inertial like LeGO-LOAM, Cartographer,
LIO-mapping and LIO-SAM. The evaluation of the methods is performed based on a dataset
collected from the Boston Dynamics Spot robot equipped with 3D lidar Velodyne Puck Lite and
IMU Vectornav VN-100, during a mission in an underground tunnel. In the evaluation process
poses and 3D tunnel reconstructions from SLAM algorithms are compared against each other
to find methods with most solid performance in terms of pose accuracy and map quality.
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1. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) is the
challenging task which addresses the problem of au-
tonomous robot navigation in unknown environment Sualeh
and Kim (2019); Agha et al. (2021) during which robot
incrementally acquires a map of the environment using
on-board perception and inertial sensors, while trying to
localise itself within this map. Robust pose estimation
is a crucial task for a mobile robot control. In the lab
environment it can be solved by the means of the motion
capture system, like Vicon. But it is not always possible
to deploy it to the target area of robot navigation. Thus,
one of the goals for robots is to being able to perform
autonomous navigation independently from the infrastruc-
ture Lindqvist et al. (2020). Outdoors, in the open areas
it is possible to use Global Positioning System (GPS)
for pose estimates. However, in GPS denied environments
like subterranean areas this solution will not work or will
require installation of additional equipment, which is not
always applicable Mansouri et al. (2020). Currently, there
exist SLAM algorithms that are based on the camera and
ranging sensors Sualeh and Kim (2019), which in general
require fast mobile computers to deliver real-time map
building and pose estimation.

Overtime the technological development of mobile CPUs,
sensors’ miniaturisation and long endurance batteries al-
lowed to run SLAM algorithms onboard, which fostered
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bringing robotic applications into challenging SubT en-
vironments. In such areas the crucial factor is human
safety, which can be improved by the means of robots that
perform autonomous inspection and increase situational
awareness of human workers about environment by pro-
viding its reconstruction. This imposes high requirements
to the mapping quality and localisation accuracy.

In SubT environments with poor illumination visual
SLAM methods Sualeh and Kim (2019) tend to demon-
strate poor performance, which is not acceptable. In con-
trary to them the lidar-based methods Ren et al. (2019)
can deliver a solid performance for pose estimation and
map presentation of the environment. Nevertheless, their
performance may degrade over the time due to peculiar-
ities of the SubT environments like long featureless, self-
similar tunnel areas, dusty tunnels and sensor limitations.

In this article we will focus on the evaluation of the major
3D SLAM methods that are open source and compatible
with Robot Operating System (ROS) Quigley et al. (2009),
which became state-of-the-art (SoA) frameworks for the
robotic community. To date there are several articles that
conducted a comparison of lidar-based SLAM algorithms.
For example, in Milijas et al. (2021) Cartographer, LOAM
and hdl graph slam are compared in open outdoor envi-
ronment. Also Cong et al. (2020) presents the evaluation
of the developed SLAM method against A-LOAM and
LeGO-LOAM methods in outdoor environment. In Ren
et al. (2019) the evaluation of four SLAM methods in
indoor environments is shown. Authors in study Milijas
et al. (2020) are comparing only two methods. Finally, the
comparative analysis in study Zou et al. (2021) is lacking
one of the most recent and advanced SLAM methods LIO-
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SAM Shan et al. (2020) and Fast-LIO Xu and Zhang
(2021), while the evaluation took place in the warehouse
area with lots of features.

Thus in this study we will experimentally evaluate nine
open-source ROS compatible 3D SLAM lidar-based algo-
rithms in the underground environment.

The main contributions of this work are: (1) The evalu-
ation of nine SoA Lidar based 3D SLAM methods using
a SubT dataset to demonstrate their performance in such
environments, motivated by the emerging need for their
deployment in underground tunnel environments. More
specifically, the evaluation dataset was collected during the
exploration mission of the Boston Dynamics Spot along an
underground area with multiple tunnels. The onboard sen-
sor suite consisted of the Velodyne Puck Lite lidar that is a
SoA sensor for autonomous navigation and the Vectornav
vn-100 IMU, hardware that is commonly used in multiple
robotic systems and highly relevant when it comes to
SubT research efforts. (2) The quantitative and qualitative
comparison of the pose estimation and produced 3D maps
of the environment for all methods which will make easy
for the robotic community to assess and understand their
advantages and disadvantages, including the selection of a
SLAM algorithmic framework for this applications.

The rest of the article is organised as follows. Section 2
introduces the SLAM methods, Section 3 follows their
evaluation and finally the article is summarised with
Conclusion section.

2. SLAM ALGORITHMS

In this study it have been selected all the major SLAM
algorithms that have real-time operation and use as an
input a point cloud from a 3D lidar or couple it with IMU
measurements. This selection introduces firstly the robotic
platform, secondly the SubT environment and finally the
SLAM methods. Worth noting that not all of them have an
article that could be cited and that introduces and explains
the method, however they remain to be operational and
can stand as a baseline for numerous applications and
future developments towards performance improvements
and multi-agent SLAM Mourikis and Roumeliotis (2006);
Krinkin et al. (2017). All the selected methods were tested
with ROS Melodic and Ubuntu 18.04.

2.1 Robotic platform and data set

As robotic platform for data collection was used Spot
legged platform Koval et al. (2022) developed by Boston
Dynamics (Figure 1). This robot is capable of moving
with the velocity of up to 1.6 m/s, carrying up to 14 kg
of payload and traversing challenging terrains. On top of
Spot was placed the payload that includes 3D lidar, IMU,
spotCore and batteries as depicted on the Figure 1. The
onboard computer has Intel Core i5 CPU with 16GB of
RAM with Ubuntu 18.04 and ROS Melodic. To provide an
unobstructed field of view for 3D lidar it was mounted as a
column structure in a front looking position with separate
LED light bars Lustreon DV12V 10W with dimensions
170 × 15 mm pointing towards front, left and right.

The dataset was collected from Lule̊a Sweden under-
ground tunnel with manually controlled Spot as shown

Fig. 1. Spot robot equipped with sensors for dataset
collection in the underground tunnel.

on the Figure 2. It was recorded in one pass storing the
measurements from IMU and 3D lidar in a ROS bag file 1 .
The top view of a 3D reconstructed map is depicted on the
Figure 2. The data were collected with the sensor config-
uration as depicted on the Figure 1 with IMU publishing
rate set to 200Hz and 3D lidar publishing rate set to 10Hz.
Obtaining a ground truth in SubT environment is a chal-
lenging task, thus in this study only relative comparison
of the algorithms is provided.

Fig. 2. A top view of the map generated from the 3D
lidar scans from the field test environment. A solid
line represents the traverse through the tunnel, while
arrows depict the direction of traverse.

In the following subsections we will briefly introduce the
selected algorithms.

2.2 B(erkeley) L(ocalization) A(nd) M(apping)

Berkeley localization and mapping (BLAM) 2 is an
open-source ROS package for lidar graph-based real-
time localization and mapping. It computes loop clo-
sures by iterative closest point (ICP) scan matching using
scans from nearby poses. For map optimisation it uses
Georgia tech smoothing and mapping (GTSAM) library.
BLAM is capable of building very dense and precise
maps online which makes it a computationally expensive
method Nava Chocron (2019).

2.3 Laser Odometry and Mapping methods

Laser Odometry and Mapping (LOAM) Zhang and Singh
(2014); Wolfe (2016) or loam velodyne is a real-time
method that is able simultaneously estimate odometry
and build a map using 3D lidar. This method solves
the SLAM task by splitting it into two algorithms. One
for computing odometry and second for incremental map
1 http://wiki.ros.org/rosbag
2 https://github.com/erik-nelson/blam



building, additionally it also estimates velocity of the lidar.
LOAM doesn’t have a loop closure, which prevents it to
recognise previously visited areas, instead it implements
feature point matching which allows to ensure fast odom-
etry computation and accurate map building. The method
has IMU support which allows to obtain higher accuracy
in comparison with using only lidar.

A-LOAM Zhang and Singh (2014) is an advanced imple-
mentation of LOAM Zhang and Singh (2014), which uses
the Eigen library for linear algebra operations and Ceres
Solver for solving the corresponding optimisation problem.

Fast LiDAR Odometry and Mapping (F-LOAM) Wang
et al. (2021) is an optimized version of LOAM and A-
LOAM which is based on a a non-iterative two-stage
distortion compensation method that allows to lower the
computation time. F-LOAM combines feature extraction,
distortion compensation, pose optimization, and mapping.

2.4 ISC-LOAM

Intensity Scan Context based Full SLAM Implementation
(ISC-LOAM) Wang et al. (2020) is another algorithm
designed for 3D lidars. It combines a global descriptor
that incorporates geometry and intensity characteristics.
The proposed loop closure detection approach is based
on a two-stage hierarchical intensity scan context (ISC)
for place recognition, which allows to improve compu-
tational performance. The ISC incorporates fast binary-
operation based geometry indexing and intensity structure
re-identification.

2.5 hdl graph slam

hdl graph slam Koide et al. (2018) is an open source
ROS package for real-time simultaneous localization and
mapping with a 3D lidar. This method is based on the pose
graph SLAM in which loop closure detection is based on
the Normal Distributions Transform (NDT) scan matching
between the consecutive frames. The NDT method has
better scan matching performance in the applications with
3D lidars than other algorithms. In it the Unscented
Kalman Filter is used for pose estimation.

Complementary to the developed package is the
hdl localization module that implements relocalization on
the known map. In literature this problem can be referred
as global localization problem or the kidnapped robot
problem Se et al. (2002).

2.6 LeGO-LOAM

Lightweight and ground optimized lidar odometry and
mapping (LeGO-LOAM) Shan and Englot (2018) is a
real-time method designed for pose estimation mapping
with unmanned ground vehicles in complex environments
with changing terrain. It leverages ground separation by
performing point cloud segmentation, which allows to re-
ject points that can represent unreliable features. LeGO-
LOAM performs pose estimation using two-step optimisa-
tion. During the first step, planar features are extracted
from the ground to obtain z, roll, pitch and during the sec-
ond step the remained x, y, yaw are obtained by matching
features extracted from the point cloud. This method also
supports loop closure, which is implemented using ICP.

2.7 Cartographer

Cartographer Hess et al. (2016) 3 is a system developed by
Google for real-time simultaneous localization and map-
ping for 2D and 3D. It has support of distinctive sensor
configurations. For 3D SLAM it requires to have IMU data
that are needed for the initial guess for determining the
orientation of the lidar scans. At the best pose estimate
it take the scans from a lidar and translates them into
a probability grid which is used to build a submap. The
recently finished submaps and scans are considered for
loop closure through the scan matching. The scan match-
ing relies on a branch-and-bound algorithm. Cartographer
combines separately local and global SLAM approaches.
In the local SLAM the Ceres matcher is used to find poses
that optimally match the submap. This process slowly
accumulates error, which is eliminated by the loop-closure
mechanism that is based on the Sparse Pose Adjustment
(SPA) Konolige et al. (2010).

2.8 LIO-mapping

A Tightly Coupled 3D Lidar and Inertial Odometry and
Mapping (LIO-mapping) Ye et al. (2019) is a real-time
method for 3D pose estimation and mapping. In this
method IMU is tightly coupled with lidar in order to
jointly minimize the cost derived from lidar and IMU mea-
surements. This method uses the sliding window approach
to limit the number of computation by including new
pose estimates and deprecating oldest ones in the window.
However, LIO-mapping remains to be computationally
expensive method for real-time navigation taking more
than 0.2 seconds for simultaneous odometry estimation
and mapping with a 16 line 3D lidar.

2.9 LIO-SAM

LIO-SAM Shan et al. (2020) is a real-time tightly-coupled
lidar-inertial odometry package, which built from LeGo-
LOAM and is an ICP-based method. This method is
constructed as a factor graph, which makes it easy to incor-
porate additional sensors. In its implementation LIO-SAM
adds IMU preintegration in an incremental smoothing and
mapping approach with the Bayes tree. Worth noting that
this method is capable of processing data 13 times faster
than real-time.

2.10 FAST-LIO

FAST-LIO Xu and Zhang (2021) is a LiDAR-inertial
odometry framework in which a tightly-coupled iterated
Kalman filter is used to fuse LiDAR feature points with
IMU measurements. In this method planar and edge
features are extracted from the lidar point cloud, at the
next step these features together with IMU measurements
are used for state estimation, after that the estimated pose
is used to register the feature points into the global frame
and to update the global map.

The global frame of FAST-LIO is defined as the first
IMU’s frame. That means the IMU’s x-y-z axis at the
very beginning will be the global frame’s x-y-z axis. So
the robot’s orientation may not looks like you imagine.
3 https://github.com/cartographer-project/cartographer\_ros



Table 1. SLAM packages1

SLAM package 3D lidar IMU Loop closure Real-time 3D Real-time Relocalization
point cloud map operation on a known map

BLAM R N Yes (ICP) Yes Yes No

loam velodyne R O No Yes Yes No

A-LOAM R N No Yes Yes No

F-LOAM R N No Yes Yes No

ISC-LOAM R N Yes (ISC) Yes Yes No

hdl graph slam R O Yes (NDT) Yes Yes Yes2

LeGO-LOAM R O Yes (ICP) Yes Yes No

Cartographer R R Yes (SPA) No Yes Yes

LIO-mapping R R No Yes Yes No

LIO-SAM R R Yes (ICP) Yes Yes No

Fast-LIO R R No Yes Yes Yes3

1 In 3D lidar and IMU columns, R - required, N - not required, O - operational.
2 Relocalization on the known map is implemented in hdl localization package.
3 Relocalization on the known map is implemented in FAST LIO LOCALIZATION package.

All the SLAM methods, required hardware and their
features are summarised in the Table 1

The next step was to run the recorded data on the SLAM
methods.

3. EXPERIMENTAL EVALUATION AND
DISCUSSIONS

In this Section the evaluation of the SLAM methods is
performed in the SubT environment based on the collected
dataset introduced in the subsection 2.1.

The benchmarking of SLAM methods was conducted on
the computer with Intel i7 9th generation CPU, 64 GB
of RAM, Ubuntu 18.04 and ROS Melodic. For the algo-
rithms’ comparison we have done our best efforts to tune
all methods with respect to the given hardware configura-
tion of the autonomy package.

3.1 Evaluation and comparison of trajectories

The collected dataset from the underground tunnel rep-
resents a challenging environment for lidar-based SLAM
algorithms in terms of lack of features, repetitiveness and
narrow size, while additionally two close-loop branches
will allow to evaluate methods’ loop closure performance.
All SLAM methods were thoroughly tuned with our best
efforts, however, based on multiple evaluations we came
to conclusion that the field of view of the VLP16 Lite is
not sufficient to capture enough data in vertical dimension,
which leads to high uncertainty about z axis, which cannot
be compensated even with the use of IMU, as depicted in
the Figure 3.

Based on our slope measurements with DeWALT laser
level going for 50 meters from the entrance towards the
center of the tunnel we obtained that the tunnel has a
positive slope with angle of incline equal to 0.95 degrees.
However, none of the considered methods, was able to
estimate the angle of inclination correctly even at the
straight part of the tunnel, as such for Cartographer
the inclination angle is estimated about 2.91 degrees, for
hdl graph slam it is about 0.1 degrees, for LIO-SAM it is
about -1.4 degrees and for Fast-LIO about -3.7 degrees.
Worth noting that all methods except Cartographer and

Fig. 3. Estimation accuracy of z coordinate for all methods

hdl graph slam estimated negative slope, which can mean
that the remained methods that fuse IMU data were
strongly relying on lidar sensor rather then on IMU.

Alike to the vertical dimension, in the horizontal dimen-
sion VLP16 Lite has high data redundancy, which allows
to all the methods to cope with the x and y 2D pose
estimation, as depicted in Figure 4.

Fig. 4. 2D pose estimation accuracy for all methods

As it can be seen from the Figure 2, the 2D pose estimated
by all SLAM methods is inline with the map of the tunnel.
In overall, all algorithms were able to estimate thepo e
along the tunnel with hdl graph slam as a clear outlier.
We will continue this analysis in the next subsection,
where we will evaluate the produced maps. For relative
methods’ evaluation we’ve calculated and compared the
total travelled distance, which is shown in the Table 2 and
calculated confidence interval of [251.20 256.66] meters
with confidence level of 95%. From this can be seen that



Fig. 5. Produced 3D point cloud maps from each method. The global coordinate frame for all figures is as defined for
BLAM method, in which on the upper part is shown xy view and on the bottom xz view.

BLAM, A-LOAM, LeGO-LOAM, Cartographer and Fast-
LIO distance measurements have more trusted values.

Table 2. Summary of the comparison

SLAM package Travelled distance, Number of points
[meters] in the produced map

BLAM 253.6177 2 429 696

loam velodyne 257.6209 161 766

A-LOAM 255.1464 274 430

F-LOAM 258.6841 60 429

ISC-LOAM 260.2869 4 586

hdl graph slam 249.2185 1 600 192

LeGO-LOAM 252.9649 37 481

Cartographer 254.4119 8 232 813

LIO-mapping 247.5393 166 977

LIO-SAM 249.2190 5 594 126

Fast-LIO 254.5439 15 675 216

3.2 Evaluation and comparison of point clouds

The mapping results allow to see the clear difference
between methods with and without loop closure, which
might be not that noticeable from the positioning results.
In Figure 5 the produced maps from each algorithm
are depicted. Based on it, one can say that the lack of
loop closure in loam velodyne, A-LOAM, F-LOAM and
LIO-mapping is resulting in a point cloud map that is
misaligned. In line with this group of methods Fast-
LIO, though does not have a loop closure feature, could
efficiently deal with the environment and produce a correct
map.

Among methods with implemented a loop closure capabil-
ity, one can say that all of them except BLAM can provide
a correct map. The hdl graph slam, while it is capable
to produce the correct map, it remains to be outlier in
pose estimation, though this finding could be due to a
potential imperfection of our tuning. Depending on the
point cloud registration approach, in default configuration,
SLAM methods produce the following number of points,

as shown in the Table 2, from which we can see that
the least memory intensive method for storing the map is
ISC-LOAM and Fast-LIO is the most memory expensive.
Though, the overall number of points in the map can be
reduced by additional method configuration, as for exam-
ple in the Figure 5, the map size for LIO-SAM method is
reduced to 4820 points.

Thus, if we replot the Figure 4 at the junction area of the
tunnel and leave on it only methods that provided solid
results in pose estimation and mapping, as shown in the
Figure 6, one can say that all methods demonstrate good
stability and performance. However, as it can be noted
in the junction area LeGO-LOAM performed loop closure
so the map was corrected, but not the trajectory. Worth
noting that IMU impact on the method performance,
seeing that Fast-LIO is performing equally with methods
with loop closure.

Fig. 6. 2D pose estimation accuracy for the selected
methods

4. CONCLUSION

In this article we compared the most recent and SoA
lidar SLAM methods’ performance in a demanding SubT
environment. For that we have collected the dataset using
a Spot robot equipped with our autonomy package and
configured all SLAM methods respectively. Based on the



SLAM methods comparisons carried out in this article,
it can be concluded that the equipped 3D lidar is not
sufficient for 3D pose estimation leading to significant drift
in z axis due to the lack of features. Thus, our analysis was
focused on 2D pose comparison. The evaluation results
demonstrated that BLAM, A-LOAM, LeGO-LOAM, Car-
tographer and Fast-LIO produce more trusted results than
other methods. ISC-LOAM is the least memory expensive
method for map storing, though the produced map is
very sparse comparing it with Fast-LIO. Moreover, it can
be concluded that fusing IMU with lidar is helpful for
correcting the pose estimation.

As a future direction we aim to use lidar sensor with
wider field of view and to perform evaluation in a larger
environment and with an uneven terrain that is challenging
for legged robots.
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