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Abstract
Exploration and mapping of unknown environments is a fundamental task in applications for autonomous robots. In this
article, we present a complete framework for deploying Micro Aerial Vehicles (MAVs) in autonomous exploration missions
in unknown subterranean areas. The main motive of exploration algorithms is to depict the next best frontier for theMAV such
that new ground can be covered in a fast, safe yet efficient manner. The proposed frameworkusesanovel frontier selection method
that also contributes to the safe navigation of autonomous MAVs in obstructed areas such as subterranean caves, mines, and
urban areas. The framework presented in this work bifurcates the exploration problem in local and global exploration. The
proposed exploration framework is also adaptable according to computational resources available onboard the MAV which
means the trade-off between the speed of exploration and the quality of the map can be made. Such capability allows the
proposed framework to be deployed in subterranean exploration and mapping as well as in fast search and rescue scenarios.
The performance of the proposed framework is evaluated in detailed simulation studies with comparisons made against a
high-level exploration-planning framework developed for the DARPA Sub-T challenge as it will be presented in this article.

Keywords MAV Sub-T exploration framework · DARPA Sub-T

1 Introduction and Background

Rapid exploration and mapping of unknown subterranean
environments have become a significant interest in the field

The REF exploration framework code will be publicly available at
https://github.com/LTU-RAI/REF.git for the community.
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of autonomous deployment of robots1.MAVshave the poten-
tial in being a viable solution in terms of mining areas
inspection [50], exploration and mapping [28, 30, 40] and
inspection of infrastructures [33] due to their high degree
of freedom and fast traversability. The applications of MAVs
have also been discussed in developing next-generation rotor
crafts formars exploration in [38] and [39]. DeployingMAVs
for exploration andmapping of dark, dusty, and hostilemines
and caving systems is particularly challenging because, at
the beginning of the exploration process, the environment
is completely unknown for navigation. In order to map
surrounding for safe navigation in such environments, vision-
only based navigation techniques are insufficient [37]. The
unstructured and rocky environment of mines and caves is
a major challenge that contributes to uncertainty in sensor
measurements [1]. In an attempt to explore and map such
environments, the crucial requirements for autonomous nav-
igation problems are a) detecting the frontiers, b) selecting
the optimal frontier, and c) safe navigation to the selected
frontier to successfully build a map of the environment.

1 The video link of this work can be found at https://youtu.be/
nmN0Xy6EqLM
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Fig. 1 DARPA Sub-T world: Exploration instance. (1) Rapid local exploration behavior (2) local exploration in very narrow as well as wide
cave-void like areas (3) Safe Next Best Frontier (NBF) in obstructed narrow tunnels

Fig. 2 Exploration behavior using the proposed framework in multiple exploration scenarios in DARPA Sub-T virtual world
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In Figs. 1 and 2 explorationinstancesoftheproposedmethod
is shown in different environments. The capability of the pro-
posed method to handle the exploration of narrow passages
as well as wide tall void-like structures is presented through
Fig. 2.

The framework introduced in this work selects optimal
frontiers based on the idea of continuing the exploration in
one direction until there is no new potential information to
gain in the particular direction. Planning a safe path to such
selected frontiers is crucial when exploring a large environ-
ment. The path planning method used in this work takes into
account the safety margin of such paths based on the size of
the MAV and its ability to traverse through the obstructed
areas. The MAVs are also constrained in terms of their lim-
ited time of flight. Therefore the proposed framework also
accounts for cost-based frontier selection while evaluating
the next optimal area to visit. The proposed framework also
complements the idea of efficiently utilising the resources of
the vehicle by rapid yet safe navigation. This work presents a
rapid exploration framework for safe autonomous navigation
of MAVs in caves. The point cloud map of the explored vir-
tual cave environment with theMAV’s trajectory is presented
in Fig. 3.

1.1 RelatedWorks

In the original work of frontier-based exploration [54], the
points lying at the boundary between known (free) space and
unknown space are defined as frontier points. In [54] a closest
frontier from the robot’s position is selected to move to such
that the boundary at which frontiers lie, will also progress

Fig. 3 MAV risk-aware trajectory while exploring a wide-large cave
environment using the proposed approach

towards more unexplored space. The same approach was
also extended for the case of multiple robots, as presented
in [55]. In [21] and [23] frontier-based exploration strate-
gies are studied extensively for comparison against different
exploration approaches. A 3D Frontier Based Exploration
Tool (FBET) for aerial vehicles is presented in [58]. The
FBET framework uses a similar approach to [54] for fron-
tiers generation and the generated frontier are clustered for
the selection of candidate frontier goal based on cost function
that takes into account the cost of moving to the goal point.
A Stochastic Differential Equation (SDE) based exploration
approach is presented in [46]. In the SDE-based exploration
strategy, the authors consider simulating the expansion of
the system of particles with Newtonian dynamics for the
evolution of SDE. In [46] the authors consider the region
showing a significant expansion of particles as a region
that would lead the MAV to more unexplored space. In
[19] A vision-based exploration-mapping problem-solving
technique is presented that also utilizes MAV to navigate
in unexplored areas using continuously updating frontiers.
Exploration of unknown environments is also extended to
legged or ground robots. Probabilistic Local and Global Rea-
soning on Information roadMaps (PLGRIM) as presented
in [26], discusses a hierarchical value learning strategy for
autonomous exploration of large subterranean environments.
Themethodology presented in [26] uses hierarchical learning
to address local and global exploration of large-scale envi-
ronments while focusing on near-optimal coverage plans. A
Frontloaded Information Gain Orienteering Problem (FIG-
OP) based strategy is presented in [41] that uses topological
maps to plan exploration paths in fixed time budget explo-
ration scenarios. The method presented in [41] is tested with
ground robots in a multi-kilometers subterranean environ-
ment targeted at time-constrained exploration missions.

Separated from frontier-selection methods are the meth-
ods with integrated exploration behavior in the path planning
problem, often based on trying to plan a path in order to
maximize the information gain while minimizing distance
traveled or similar metrics. These planners generally fall
under the Next-best-view approaches as in [4, 9, 42] and
have seen great application success, but other methods in
similar directions exist, such as ERRT [28] takes into con-
sideration also actuation effort along with information gain
in order to yield more efficiency towards the exploration of
unknown and unstructured areas. Additionally, the Rapid
exploration method proposed in [7] is developed to main-
tain a high MAV velocity while exploring. Autonomous
inspection of structures by utilizing a frontier-based algo-
rithm, along with a Lazy Theta∗ path planner, is presented
in [17]. Finally, an information-driven frontier exploration
method for MAV, which uses a hybrid approach between
control sampling and frontier based is presented in [8]. As
state-of-the-art exploration method presented in [12] is tai-
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lored and deployed in large-scale exploration missions both
in simulations and real-world experiments. The developed
planner is structured around motion primitives that search
for admissible paths, taking advantage of efficient volumet-
ricmappingwith collision checks and future-safe path search
that evaluates the variation of speed along the path, while
also maximizing the exploration gain for an overall fast nav-
igation scheme. Moreover, in [45] an exploration approach
that combined frontierswith receding horizon next-best-view
planning has been proposed. The frontiers are part of the
global planning part, while the next best view is responsible
for the local exploration part. In [53] a dynamic exploration
planner (DEP) for MAV exploration, based on a Probabilis-
tic road map has been presented. The sampling nodes are
added incrementally and distributed evenly in the explored
region, while the planner uses the Euclidean Signed Distance
Function map to optimize and refine local paths. The explo-
ration scheme in [5] presented the Permutohedral Frontier
Filtering, which is based on bilateral filtering with permu-
tohedral lattices to extract the score-based spatial density of
the selected frontiers.Multiple studies have also incorporated
visual servoing-basedpath planning and control architectures
for mobile robots as presented in [13]. The authors in [16]
have formulated gaussian functions based control architec-
ture for mobile robots that rely on mainly visual information
of surroundings. The authors have extended the work further
in [14] that uses decision trees as well as adaptive poten-
tial area methods to achieve autonomous control of mobile
robots in real life applications. In the field of sampling-based
space mapping area the research studies presented in [15],
use the bi RRT method to smooth the RRT path using curve
fitting methods. In [15] the Ability to navigate from start
to goal position using the smooth path by curve fitting also
addresses the problem of actuation of robot if extended for
MAV in future.

Various planning algorithms have been developed for the
navigation of aerial platforms in unknown environments,
where in general they can be divided into map-based or
memory-less approaches or their combination. In [44] a
hierarchical planning framework that combines map build-
ing from fused depth data, as well as instantaneous depth
data, both organized into separate K-D trees has been pro-
posed. The planner relies on a slower global planner to get
a goal location, which is evaluated using motion primitives
against the K-D trees with the lowest cost candidate primi-
tive to be selected. In [56] a motion planning method for fast
navigation of autonomous MAVs has been developed. The
algorithm divides the environment modeling in two parts:
i) the deterministically visible area within the onboard sen-
sor range, and ii) the probabilistically known area beyond
the sensor range from a-priory map. The planning method
maximizes the likelihood of reaching a goal, where a finite
set of candidate trajectories are separated into groups and

evaluated for collisions. In [34] a navigation method for
MAVs based on disparity image processing has been pro-
posed. More specifically, the disparity image is used for
direct collision checking, incorporating C-space expansion
of obstacles. The motion planning part verifies obstacle-free
trajectory, projecting them into the disparity image and com-
paring their disparity valueswith theC-space disparity values
for collision checking. In [6] a memory-less planner that is
partitioning free space in pyramids, using direct depth image
measurements has been demonstrated. The use of spatial gen-
eration of pyramids of the free spaces, allows for labeling
obstacle-free trajectories that lie inside the pyramids, while
achieving fast generation of large number of candidate tra-
jectories and performs collision checks. In [2] the authors
present a reactive navigation system for MAV exploration.
The proposed algorithm is based on a two-layered planning
approach that leverages occupancy information for frontier
detection and local raw LiDAR data for collision avoidance
based on artificial potential fields. In [49] “FASTER” has
been developed, an optimization-based planning approach
for fast and safe motion in unknown environments. The plan-
ner leads to high-speed navigation by allowing to plan in
known and unknown configuration space using a convex
decomposition in a two-trajectory design approach, a fast
and safe trajectory. In [32] a reactive navigation and collision
avoidance scheme for MAVs that combines a layer of obsta-
cle detection based on 2D LiDAR with NMPC constraints
was proposed for agile local navigation. In [24] a collec-
tion of sensor-based heading regulation methods have been
proposed for aerial platform navigation along underground
tunnel areas. In this work, the heading regulation methods
using i) image centroid calculation from either single image
depth estimation, or dark area contour extraction, or CNN
for dark area extraction and ii) from processing 2D lidar
measurements have been described. In [18] a mapping for
motion planning architecture that queries for the minimum-
uncertainty view of a point in space, searching a set of recent
depthmeasurements under noisy relative pose transforms has
been presented. This work enables the identification of local
3D obstacles in the presence of significant state estimation
uncertainty, evaluatingmotion plans. Table 1 summarizes the
SoA exploration strategies while highlighting the contribu-
tion of REF.

1.2 Motivation

The proposed Rapid Exploration Framework is developed in
alignment with the exploration part of the problem statement
in DARPA subterranean challenge. The challenge required
team of robots to navigate in a completely unknown subter-
ranean environment to detect artifacts of interest and localize
them in the global map. Aerial vehicles provide additional
flexibility when traversing through narrow entrances, par-
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Table 1 Different exploration frameworks and their corresponding
exploration-planning approach

Framework Exploration approach

[54] Closest frontier based on euclidean distance and
navigation to selected frontier based on
depth-first-search on grid

[57] Incremental frontier structure and hierarchical
planning for trajectory generation to selected
frontier

[58] Maximize information gain based on travel cost
to frontier

[7] Selection of furthest frontier in FOV to maintain
high speed flight & switches to classical frontier
approach when no frontiers exist in FOV

[52] Exploration derived from direct point cloud
visibility to reduce mapping computation

[19] Compute for centroid of closest frontier cluster &
polar histogram based computation for cost to
reach selected frontier

[28] Sampling based RRT structure approach to
maximize information gain with minimizing
actuation cost

[12] 3D acceleration sampling to compute collision
free paths to maximum volumetric gain vertices
using motion primitives

[10] Bifurcated Local and global exploration
approach. Sampling based graph for local
exploration & global re-positioning to closest

[43] Learning based exploration derived from graph
based planning exploration planning
architecture.

[REF] Safe frontier generation for local and global
exploration & local frontier selection based on
heading and avoidance cost & heading
regulation, height difference and travel to
frontier cost based global re-positioning when
local exploration gain is low

tially blocked passages, and over obstacles. Add to that,
their higher navigation speed, the MAVs act as data mules
to carry information to and from the base. However, rapidly
identifying safe paths for exploration while navigating is a
challenging task for suchMAVs. In response, thiswork estab-
lishes a framework that prioritizes rapid exploration in one
direction until there is not enough information to acquire
or a dead end in exploration. A risk aware expendable grid
based planning module complements the proposed explo-
ration framework to globally re-position theMAV.The global
re-positioning is trigerred when MAV meets a dead end of
a tunnel or cave and needs to navigate to a potential global
frontier vertex to continue exploring a partially seen area.
The proposed strategy is different from classical exploration
approaches in terms of extracting local safe goals to visit
while exploring and risk aware planning in an expendable
grid map to quickly globally re-position the MAV. The clas-

sical approaches in literature consider frontiers and sampling
based solutions for exploration however, an additional layer
of focused local planning assists the MAV to rapidly explore
local unknown space while efficiently utilizing the available
flying time. The efficient utilization of flying time for MAVs
is backed by a raid exploration behaviour which a) focuses
on exploring in one direction to avoid unnecessary change in
the heading vector of the MAV and b) plans risk aware paths
while navigating forward to avoid hovering at one place for
planning purposes.

2 Problem formulation

The proposed work is established with the goal of devel-
oping a rapid exploration algorithm to use MAVs as tools
for exploration of unknown subterranean environments. The
major challenge with MAVs is the limited flying time for
autonomous missions. In this work exploration is considered
as fixed time budget based missions to replicate the reality of
the challenge in a subterranean explorationmissionwhere the
MAV is expected to explore for a given time budget and then
autonomously return to base with the shortest yet safest path.
In theory, the exploration part of the problem can be oriented
as an exploration of bounded 3D space denoted as V ⊂ R

3.
The 3D space around the MAV is interpreted as three pos-
sibilities, a) occupied, b) free and c) unknown in order to
utilize the sensor data for the MAV to perceive the environ-
ment around it. Occupancy probability based modelling is
adapted in order to model free, occupied and unknown space
around the MAV. In the theoretical aspect, the exploration
will be considered complete when Voccupied

⋃
V f ree = V

while Vunknown = ∅. Voccupied , V f ree and Vunknown repre-
sent the occupied, unknown and free space within V . The
proposed REF framework is developed for it’s prominent
use case in mines and cave environments where, MAVs
could be used with the REF framework to rapidly explore
and map unknown areas. Therefore, the theoretical explo-
ration completion is evaluated based on fixed time budget
based exploration missions where the MAV is deployed with
pre defined exploration mission duration and once the clock
exceeds mission duration, the MAV is required to follow a
short yet safe path back to the base. The safe exploration of
unknownandunstructured subterranean environments is sub-
ject to howwell theMAVcannavigate in previously unknown
areas given bounds on actuation effort and safety risk margin
in path planning. The safety risk margin m is defined such
that in an expendable 3D grid based map (OctoMap) the path
planning is constrained with m ∗ vres margin from an occu-
pied voxelwhile planning paths to a safe frontier. vres is voxel
resolution and therefore the risk aware path is in proportion
to the grid resolution and riskmargin. In order to be deployed
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in a real scenario, the exploration and planning framework
should adapt based on the available computational resources
(processing power of the MAV to compute safe paths in grid
based map). The limitation on planning safe yet fast paths is
imposed in relation to how fast the MAV can plan the paths
while utilizing minimum resources to efficiently explore the
area. The performance evaluation of the proposed framework
will be based on explored volume in fixed time budget based
missions and distance travelled from the base.

2.1 Contributions

The exploration, global planning and navigation architec-
ture of this work is part of the development efforts within
the COSTAR team [1, 36] related to the DARPA Sub-T
competition [11], while it is directly applicable for cave envi-
ronments. Based on the above-mentioned state-of-the-art, the
key contributions to this article are listed in the following
manner.

– The main contribution of this work stems from the devel-
opment of safe frontier points generation and local aswell
as global cost-based candidate frontier point selection
method. In the presented work we extend the classical
and rapid frontier exploration approaches with improve-
ments concerning the safety of MAVs in the field as well
as maintaining the agile nature of exploration. The pro-
posed approach focuses on the local frontier selection that
takes into account the position of such frontier relative to
any static or dynamic obstacle in the field of view while
also minimizing the yaw movement of MAV. When no
such frontier exists in the local field of view, the global
re-positioning of the MAV is triggered in order to lead
the MAV to global frontiers that lead the MAV to more
unexplored space. The global re-positioning approach is
based on a cost function on the overall actuation effort (A
cost that relates roll, pitch, yaw rate, and Thrust inputs to
make a specific maneuver to move to a point) required by
the MAV to navigate to a global frontier. The proposed
global re-positioning of the MAV considers various fac-
tors such as MAV safety, actuation cost as well as how
much of the unexplored space will be seen from a poten-
tial global frontier. Such contribution differentiates our
method from other rapid frontier exploration approaches
that directly switch to the classical frontier approach,
instead in our method MAV globally re-positions itself
based on multi-layer cost assignment in global frontier
selection.As itwill be presented, such contribution is par-
ticularly important inmulti-branched tunneling or caving
system exploration scenarios.

– The second contribution presented in this article is the
integration of the overall autonomy framework which

addresses the problem of exploration, safety margin-
based path planning, and reactive navigation through
Nonlinear Model Predictive Control (nmpc) based con-
trol of MAVs. The dedicated risk-aware path planning
and potential fields-based avoidance scheme incorpo-
rated within the proposed framework allows for pushing
the limits of exploration in the candidate goal selection
process in wide, narrow, and obstructed environments.
Such integration allows realistic evaluation of the rapid
exploration framework on large-scale maps. Simulations
are performed for testing the proposed framework in
multiple large-scale scenarios in order to benchmark the
safety, speed, and versatility aspects of the autonomous
MAV equipped with the REF approach.

The rest of the article is structured as follows. Section 2
presents the problem formulation considered in this work.
Section 3 presents the proposed safe frontier points genera-
tion as well as intelligent goal selection with a focus on safe
yet fast autonomous exploration addressing the minimizing
actuation effort of the MAV. The section also describes the
overall autonomy framework which is the combination of
exploration, global path planning aswell as nmpc based reac-
tive navigation. In Section 4, a detailed analysis on simulation
experiments is presented that proves the efficacy of the pro-
posed scheme. Finally, Section 5 provides a discussion with
concluding remarks on the proposed work.

3 Proposed approach

The proposed approach employs a frontier-based explo-
ration technique which is modified with the focus on making
exploration fast, safe, and versatile for aMAVwith low com-
putational resources and limited flying time. The proposed
Rapid Exploration Framework is developed with the goal of
planning the next exploration steps while navigating to the
previously selected safe frontier goals. The lowcomplexity of
the algorithm for exploration is in line with the limited com-
putational resource (processing power) available as onboard
processors of MAVs. We use occupancy grid maps as a map-
ping framework, which can generate a 2D or 3D probabilistic
map. A value of occupancy probability is assigned to each
cell that represents a cell to be either free or occupied in the
grid. In this workwe are targeting 3D exploration of bounded
and unbounded space therefore using the baseline frame-
work of a 3D occupancy grid called OctoMap [22] we build
on top of it in order to develop the proposed 3D occupancy
checking framework used in this work. The expendable 3D
occupancy grid-based mapper OctoMap uses a data struc-
ture in which each node has eight children nodes to represent
the occupancy probability of 3D volume. This data structure
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is referred to as octree from here on. Let us denote a voxel
as v(x, y, z). The voxel v is subdivided into eight smaller
voxels until a minimum volume is reached. The minimum
volume is the same as the octree resolution vres . Based on the
formulation discussed in [35] Corresponding to each sensor
update if a certain volume in the octree is measured and if it is
observed to be occupied, the node containing that particular
voxel is marked as occupied. Using ray casting operation for
the nodes between the occupied node and the origin (sensor),
in the line of ray, can be initialized and marked as free. This
process leaves the uninitialized nodes to be marked unknown
until the next update in the octree. Let us denote the esti-
mated value of the probability P(N | z1:t ) of the node N to
be occupied for the sensor measurement (Point cloud data
from a LiDAR or depth camera) z1:t by:

P(N |z1:t ) = [1 + 1 − P(N |zt )
P(N |zt )

1 − P(N |z1:t−1)

P(N |z1:t−1)

P(n)

1 − P(n)
]−1 (1)

In Eq. 1, Pn is the prior probability of node N to be occu-
pied. Let us denote the occupancy probability for node N to
be occupied as Po

v(x, y, z) =
{
Free, if Po < Pn
Occupied, if Po > Pn

Let us define the sensor range R and a sphere of radius r
around the MAV. This radius r will be denoted as a cleaning
radius from here after. Then after each update in the cur-
rent octree, if a frontier lies inside this sphere, the frontier
is marked as seen and the frontier is deleted from {F}. The
cleaning radius is defined such that r < R therefore new
frontiers will always be generated at distance R and as the

Table 2 Description of the notations used in proposed methodology

Notation Meaning

{F} All frontier set

{O} Occupied nodes set

{C} Valid frontiers set

{SF} Safe frontiers set

{L} Local frontiers set

{G} Global frontiers set

R Sensor measurement range

r cleaning radius

m risk margin

vres octree resolution

Vβ Horizontal FOV

Vβ Vertical FOV

f(x,y,z) Frontier position

C(x,y,z) MAV current position

MAVnavigates towards the frontier, the frontiers lyingwithin
the sphere of radius r are deleted and less number of fron-
tiers need to be iterated through in candidate goal selection
process. The iterator is defined as i t . The meanings of the
important notations used in thiswork are presented inTable 2.

Algorithm 1 Safe Frontier Generation.
Input: vres ,Current octree, k, r
Output: {F},{O}

1 for N : Current octree do
2 if Po

N < Pn then
3 if N .distance() < r then
4 i t ← 0;
5 for Neighbours : N .get Neighbour() do
6 if Po

N > Pn then
7 i t ← 0;
8 break;
9 else

10 i t ← i t + 1
11 if i t ≥ k then
12 {F}.add(i t_N );
13 else
14 {O}.add(i t_N );
15 for N : {F} do
16 if (Nad j + Nm∗vres ) /∈ {O} then
17 {SF}.add(N );

The exploration framework presented in this work is a
combination of three essentialmodules, namely the safe fron-
tier point generator, the cost-based frontier point selection
incorporating also collision check, and finally, the candidate
goal publisher as presented in Fig. 5.

The proposed exploration strategy is subdivided into
different modules which are comprised of individual com-
ponents (octree generation, frontier extraction, Next Best
Frontier goal selection, and planning to the goal) in order
to establish information flow from raw sensor data to the
planned path for the MAV to follow. The first module takes
the Lidar point cloud as input and based on the occupancy
probability formulation as mentioned earlier, converts the
sensor measurement (point cloud ranges) in order to form an
octree. The octree is defined as a tree data structure in which
each sub-node is further divided into eight quadrants until
the minimum volume is reached. The safe frontier point gen-
erator module generates all safe frontiers based on the octree
where if a node N has at least k number of unknownneighbors
then it is considered as a frontier as depicted in Algorithm 1.
Let us define a risk margin parameter m related to the voxel
grid resolution vres . At any instance, in the exploration, if
node N is currently checked for to be considered as a safe
frontier then we also check the neighboring adjacent nodes
defined as Nad j within the safety margin m.

In our approach, we formulate an additional layer of
requirement in which we check the neighboring Voxels of
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an uninitialized (Unknown) Node N as described earlier and
∀(Nad j +m ∗ vres) if (Po

Nad j
≤ Pn) than the Node N is con-

sidered as a safe frontier node and is added to {SF}, where
{SF} is a set containing all safe frontiers. This means that
a particular node N , its adjacent node Nad j as well as all
nodes in the neighborhood of node N within the range of
m ∗ vres are checked and if all such nodes are seen to be
free than the node N is considered to be a safe frontier. To be
marked as a frontier, each node should have at least n number
of minimum unknown or free adjacent nodes. This process
makes a big difference in the computational complexity of
the process because by specifying a certain risk margin m
and minimum unknown or free neighbors k at the start of

exploration, the trade-off can be made between the num-
ber of iterations and coverage quality. Another improvement
our approach presents is that by not allowing any frontier to
be close enough to an occupied node in the context of risk
margin, we guarantee that inaccessible frontiers can be elim-
inated which are generated due to the error in probabilistic
occupancy mapping. The inaccessible frontiers are defined
as the frontiers that are not safe to reach or impossible to
reach in terms of MAV size and dynamics to pass through
small openings in the map. This simply implies that the risk
margin can be set in correspondencewith the size of theMAV
such that the inaccessible areas can be patched and modeled
as occupied in the map. The parameters m as well as k are

Fig. 4 Frontier classification
and notations used in the
proposed framework
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proposed with the focus of testing the proposed approach in
extremely difficult areas such as caves and mines where the
safety of the MAV is a major concern

Algorithm 2 Frontier Classification Based on Local or
Global Exploration.
Input: {SF} k, r , α θ

Output: N BF , {L}, {G}
1 for N : {SF} do
2 if N .distance() < r then
3 i t ← 0;
4 for Neighbours : N .get Neighbour() do
5 if Neighbour .isOccupied() then
6 i t ← 0;
7 break;
8 else
9 i t ← i t + 1;

10 if i t < k then
11 {SF}.remove(N );
12 else
13 {C}.add(i t_N )

14 for N : {C} do
15 if (α < (Hθ )/2) & (γ < Vβ) then
16 {L}.add(i t_N )

17 else
18 {G}.add(i t_N )

19 if {L} 	= ∅ then
20 for N : {L} do
21 N BF ← argmin

{N∈{L}}
(E)local

22 if {L} = ∅, {G} 	= ∅ then
23 for N : {G} do
24 N BF ← argmin

{N∈{G}}
(E)global

25 if {L} ⋃{G} = ∅ then
26 i t ← 0;
27 break;
28 D∗+.ComputeHomingPath()

29 nMPC ← HomingPath

As defined in Algorithm 2, corresponding to each new
sensor measurement we check if a N ∈ {F} is still a fron-
tier. We define a candidate frontier set denoted as {C} ⊂ {F}
which contains all the valid frontiers which will be exam-
ined based on the MAV’s position. A 3D Lidar is used in
the proposed method to get sensor point cloud and thus, the
framework generates frontiers in all directions surrounding
theMAV but is limited in the vertical directions with the field
of view Vβ . In Algorithm 2, we classify the frontier nodes in
two further sets {L}, {G} ⋃{C} named as Local and Global
set respectively. Such Local and Global sets contain frontier
nodes classified based on the selected horizontal and vertical
field of view Hθ and Vβ respectively as shown in Fig. 4.

This process allows us to prioritize the unknown space
lying ahead of theMAV and if there exists no unknown space
ahead of the MAV, the candidate goal is selected based on
the global cost-based goal assignment.

∀ f ∈ {L} are computed for extracting N BF such thatα ∈
[−π, π ] is minimum. The frontier points from occupancy
formulations are generated in the world frame (W) but the
frontier vector

−→
f is calculated relative to the MAV body

frame {B}. As shown in Fig. 4, the angle α is calculated
with respect to B. If a frontier f and MAV’s current position
in world frame W is defined as f (x, y, z) and C(x, y, z)
respectively then the angle α and γ with respect to body
frame B can be computed as,

α = tan−1(
fy − Cy

fx − Cx
) − ψ (2)

γ = cos−1(
h

2 ∗ ( fz − Cz)
) (3)

whereψ is the heading angle of theMAV and h is the vertical
height of the footprint of the 3D LiDAR field of view.

As discussed previously the Algorithm 1 also outputs a
list of occupied nodes {O} which has occupancy probability
Po higher than 0.5 thus considering the cluster of occu-
pied points lying in the field of view, the frontier nodes
having a lesser avoidance cost are also favored to be the
Next Best Frontier . The cost formulation for selecting a
local or global candidate goal is as follows. If we define the
current position of the MAV as C(x, y, z) then the costs for
local and global frontier selection can be formulated as,

(ζ )local =

Avoidance cost
︷ ︸︸ ︷

1

Wo

√
(p f

x − pobsx )2 + (p f
y − pobsy )2 + (p f

z − pobsz )2

+
Heading cost
︷ ︸︸ ︷
Wh ∗ α (4)

(ζ )global =
Heading cost
︷ ︸︸ ︷
Wh ∗ α +

Height difference cost
︷ ︸︸ ︷
Wz ∗ ( fz − Cz) +

Distance cost
︷ ︸︸ ︷

Wd

√
( fx − Cx )2 + ( fy − Cy)2 + ( fz − Cz)2

(5)

Where,Wo,Wh,Wz andWd ∈ R are defined as weights
associated to avoidance, heading, height difference, and dis-
tance cost respectively. We define the actuation effort E as a
function of cost such that

E = f (ζ + Thover )

where Thover is the minimum thrust required for hovering
with zero torques about the MAV arms. Thus, by optimally
selecting the next pose reference command for the MAV the
actuation effort can be minimized. The MAVs consume high
energy to produce yaw torque due to the motor saturation
constraints while also keeping the MAV hovering.
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Fig. 5 The proposed overall autonomy and navigation scheme

The overall autonomy scheme of the proposed work is
presented in Fig. 5. As discussed earlier, the framework uses
3D LiDAR or a camera depth cloud as point cloud input
and upon point cloud filtering, the framework generates an
octree of occupied, free and unknown nodes. Using thework-
flowdescribed inAlgorithm1, the framework detects frontier
points and classifies a set of safe frontiers. As presented in the
autonomy and navigation scheme (Fig. 5), based on the local
or global frontier, the risk-aware global planning module

plans a collision-free path to the next best frontier. The N BF
is then fed into the reactive navigation and control framework
to actuate the MAV to navigate to the selected frontier point.
In Fig. 5 APF stands for Artificial Potential Fields that we
have incorporated with Nonlinear Model Predictive Control
for collision avoidance. The baseline framework for reactive
navigation and control used in this framework is inspired by
our previous work [29, 30]. The Next Best Frontier is sent
to a risk-aware global planning module which is the exten-

Fig. 6 DARPA-Sub-T virtual world: Exploration of narrow-confined passages as well as large cave-like voids using the proposed framework. In
(1,2,3) the rapid exploration-coverage nature of the proposed framework is shown. In (4) the safe way-point selection and risk-aware planning to a
safe frontier are shown
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Fig. 7 Multi-branched large 3D virtual cave world exploration using proposed framework

sion of D∗Lite algorithm but implemented with an octomap
framework in this case. The global planningmodule D∗+ uses
the modeled occupied space in order to plan a safe path to
the N BF . The risk margin formulation in an expandable
octomap grid for global planning is presented in detail in our
previous work [25].

3.1 Supportive AutonomyModules

Fig. 8 Volumetric gain by the two methods

Fig. 9 Distance covered by the two methods

To enable the fully autonomous exploration mission, the
REF is evaluated in conjunction with a set of supportive
autonomy modules, seen in Fig. 5. The two core compo-
nents are a fully reactive artificial potential field (APF), and
a Nonlinear Model Predictive Controller (NMPC), presented
in detail in the previous works [29, 30] that handles the local
navigation after the next way-point is provided by REF. Dur-
ing the simulation evaluations, we assume that the estimated
UAV state vector x̂ is provided by the simulator odometry,
including position (p), velocity (v), and Euler angle states
(θ, φ,ψ). To ensure no collision with the environment in
case of a failure of the higher-level modules, we use an arti-
ficial potential field, that is directly using the raw LiDAR
point cloud P . We use a repulsive force formulation similar
to the legacy work in [51], but instead let each 3D LiDAR
point closer than the specified radius of influence (or safety
radius) rs be summed to get the force total. This can be writ-
ten as:

Fr =
NρF∑

i=1

Lr (1 − || ρi
F ||
rs

)2
−ρi

F

|| ρi
F || , (6)

where ρF = [ρFx , ρFy, ρFz denotes LiDAR points rela-
tive to the body-frame of the UAV within rs (e.g. points
used for force calculations), and NρF denotes the number of
such points. Lr is a repulsive gain that represents the largest
possible repulsive force-per-point. The result is a fail-safe
avoidance framework that does not rely on any object detec-
tion, segmentation, or occupancy mapping to maintain a safe
distance fromwalls and obstacles.We also add saturation and
rate-saturation on the repulsive force to prevent oscillating
behavior. The attractive force Fa is simply the nextway-point
wp provided byREF, that has been normalized inmagnitude.
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Table 3 Exploration volume and distance from multiple runs

Mission Duration Volume (REF) Volume (Mbplanner) Distance (REF) Distance (Mbplanner)

100 s 3578 m3 3840 m3 163 m 154 m

300 s 7854 m3 6958 m3 284 m 236 m

600 s 11367 m3 8438 m3 670 m 476 m

900 s 14477 m3 9851 m3 1066 m 781 m

1200 s 17524 m3 12760 m3 1185 m 962 m

TheAPFworks by shifting the position reference given to the
control framework as pre f = Fa+Fr . The controller is based
on a previously published NMPC framework [31, 47] that
takes the state vector x̂ = [p, v, θ, φ, ψ] and full-state refer-
ence xre f and generates optimal control inputs in the thrust,
roll reference, pitch reference, and yaw rate commands as
u = [T , θre f , φre f , ψ̇] to a low-level attitude controller, in
this case, part of the RotorS framework, which very common
cascaded control structure for UAVs. The NMPC problem is
formulated as a minimization of quadratic costs on the states,
inputs, and input rates (consecutive control inputs), with
added constraints on the input magnitudes and input rates
to enforce smooth and energy-efficient control behavior. To
solve the resulting receding horizon optimization problem,
we use the Optimization Engine [48], a fully open-source
framework that provides very fast solutions for non-convex

nonlinear parametric optimization problems. We refer the
reader to the previous works [29–31] for more details.

4 ExplorationMission Experiments

In order to validate and test the performance of our pro-
posed exploration approach we use theM100MAV provided
in the open-source Rotors Simulator [20] framework. Next-
Best-view [4] has been widely used for bench-marking the
exploration-planning algorithms. In this work we compare
our framework with the latest version of NBV, State-of-the-
Art Motion Primitive Based planner (mbplanner) [12] which
is developed also as part of the development efforts within
DARPA Sub-T challenge. We use a custom cave model with
multiple junctions, obstructed walls, narrow openings, and
steep slopes as well as tunnels with dead-ends for simula-

Fig. 10 REF equipped MAV
explores a large and wide virtual
cave environment with different
mission duration and octree
resolutions
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Fig. 11 400-sec mission:
exploration trajectories, REF vs
MB Planner. The proposed
framework (REF) covers more
ground in a given time while
avoiding loops in one area due
to the global re-positioning
functionality

tion. The cave environment has been made open-source for
the public [3]. For a fair comparison, all simulations are per-
formed with the same computational unit having Intel core
i7 processor and 16 GB memory on ROS Melodic running
on Ubuntu 18.04. For mbplanner also the simulations are
performed using the cave virtual world where the tuning of
parameters such as MAV velocity, mapping resolution, and
sampling time, was similar to the ones used for the proposed
method.

In Fig. 6 different exploration instances are shown. As
described in Section 3 the proposed framework (REF) also
uses frontier cleaning radius and due to which coverage of
large cave-like voids can also be performed while explor-
ing. Using the proposed framework the MAV is also able
to navigate in narrow and obstructed passages and at the

end of such passages if a void-like area can also be cov-
ered efficiently. The simulation experiment is also carried out
to explore a multi-branched virtual cave environment having
narrow passages continuing in different heights for a true
3D exploration. The environment is also made open source
[27]. In Fig. 7 the exploration of the virtual cave environment is
shown.

In Figs. 8 and 9 the explored volume and distance covered
by the two exploration frameworks is presented. Figures 8
and 9 depict that our method performs significantly close
to the State-of-the-Art mbplanner in terms of exploration
volume of the cave environment and distance covered respec-
tively. The proposed approach achieves a slightly higher
explored volume for the samemission time, this is because of
the novel Next Best Frontier selection approach as adapted in

Fig. 12 Time-based
exploration: MAV trajectory (a)
ours: 1 minute, (b) ours: 10
minute, (c) ours: 15 minutes, (d)
mbplanner: 1 minute, (e)
mbplanner: 10 minutes, (f)
mbplanner: 20 minutes
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Section 3. As presented in Fig. 12, the MAV trajectory in our
approach is significantly in line with the goal of maximizing
the movement into unknown areas while limiting repeated
visits to already mapped areas. In Table 3 the exploration
volume and distance traveled by the MAV in multiple differ-
ent runswith differentmission duration are presented for both
planning frameworks. As it is evident from Table 3 that the
proposed Rapid Exploration Framework (REF) shows higher
exploration volume as well as ground covered by the MAV
in multiple different runs because of the nature of computing
next paths while navigating to the current path. The higher
exploration volume and distance are highlighted in bold to
signify the gist of the comparison. All missions considered
in Table 3 have the same start positions for both planning
frameworks and theMAVs do not return to base in considered
cases, therefore, showing the exploration capability compar-
ison in the given time with the same configuration.

However, it is also important to mention that even though
the Vunknown sampling approach in bothmethods is different,
the next way-points in both cases are selected with the focus
on maximizing the information gain and exploration volume
at the same time.

In Fig. 11 the exploration mission trajectories are shown
for REF and mbplanner with the same mission duration (400
s). In Fig. 11 it is evident that the MAV covers more ground
in a given time using the proposed framework.

In Fig. 12 in both methods, the overlap in trajectory is
seen. This overlap is mainly due to the lower information
gain (corresponding to mbplanner) and {L} = ∅ (corre-
sponding to our approach) resulting in the MAV changing
direction and moving to other unexplored areas. In Fig. 12c
it is evident that using the proposed global frontier selection
strategy, the N BF ∈ {G} is selected such that the overlap
in trajectory is minimal. In Fig. 10, the MAV trajectory is
tracked in XY while exploring the lava tube virtual environ-
ment. The tracked trajectory is presented for visualizing the
Look-Ahead-Move-Forward nature of the proposed explo-
ration framework. Due to such nature of exploration, the
proposed framework is able to efficiently map new areas
within the given time and thus efficiently utilize the resource-
constrained MAV’s flight time. In Figs. 11a, b and 10c a
400-second exploration mission is performed with different
voxel resolutions. In Figs. 11a, b and 10c the exploration is
performed with voxel resolution 0.3, 0.5, and 0.7 m respec-
tively. It is evident that corresponding to eachvoxel resolution
in the exploration mission, the MAV takes a different path
while exploring based on the selected N BF in each iteration.
All exploration missions are performed with the maximum
forward velocity of the MAV as 1.5m/s. In order to map the
same environment evenmore quickly, an explorationmission
with a voxel resolution of 0.9 m and mission duration of 900
seconds is performed and the tracked trajectory of the MAV
is presented in Fig. 10d.

5 Conclusions

In this article, we proposed a Rapid Exploration Frame-
work for deploying autonomous MAVs in unknown areas
such as caves and mines. We present a novel candidate goal
selection method with the focus of minimizing the actuation
effort of the MAV by employing the Look Forward Move
Ahead approach. We compare the exploration scenario in
the same environment with the motion primitive-based plan-
ner which is a remarkable extension of the Next Best View
approach. In terms of volumetric gain and distance traveled,
we achieved similar results to that of the mbplanner. We also
address the trajectory overlap issue by introducing a simple
yet efficient cost-based goal selection approach that prevents
the MAV from Unnecessarily traveling to previously vis-
ited areas while also keeping the look forward move ahead
approach as a priority. As future development efforts, we
plan to conduct some field experiments to explore abandoned
mines and underground cave structures.

Author Contributions Akash Patel: Development, implementation,
and system integration, relating to all presented sub-modules and
developments, main manuscript contributors. Björn Lindqvist: Con-
trol and obstacle avoidance modules advisory. Christoforos Kanel-
lakis: Software integration and high-level advisory. Ali-Akbar Agha-
Mohammadi: Advisory, development lead for Team CoSTAR in
DARPASub-TChallenge.GeorgeNikolakopoulos:Advisory,manuscript
contributions, head of the Luleå University of Technology Robotics &
AI Team. All authors have read and approved the manuscript.

Funding This work has been partially funded by the European Unions
Horizon 2020 Research and Innovation Programme under the Grant
Agreement No. 869379 illuMINEation. Open access funding provided
by Lulea University of Technology.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish All authors comply with the consent to publish.

Conflict of Interest The authors have no conflicts of interest with any
related parties.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

35 Page 14 of 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Journal of Intelligent & Robotic Systems (2023) 108:35 

References

1. Agha, A., Otsu, K., Morrell, B., Fan, D.D., Thakker, R.,
Santamaria-Navarro, A., Kim, S.K., Bouman, A., Lei, X., Edlund,
J., et al.: Nebula: Quest for robotic autonomy in challenging
environments; team costar at the darpa subterranean challenge.
arXiv:2103.11470 (2021)

2. Ahmad, S., Mills, A.B., Rush, E.R., Frew, E.W., Humbert, J.S.:
3d reactive control and frontier-based exploration for unstruc-
tured environments. In: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 2289–2296. IEEE
(2021)

3. Akash, P.: Mars lava tube world. https://github.com/LTU-RAI/
MarsLavaTubeWorld.git (2021)

4. Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.:
Receding horizon "next-best-view" planner for 3d exploration. In:
2016 IEEE international conference on robotics and automation
(ICRA), pp. 1462–1468. IEEE (2016)

5. Brunel, A., Bourki, A., Demonceaux, C., Strauss, O.: Splatplan-
ner: Efficient autonomous exploration via permutohedral frontier
filtering. In: 2021 IEEE International Conference on Robotics and
Automation (ICRA), pp. 608–615. IEEE (2021)

6. Bucki, N., Lee, J., Mueller, M.W.: Rectangular pyramid partition-
ing using integrated depth sensors (rappids): A fast planner for
multicopter navigation. IEEE Robotics and Automation Letters
5(3), 4626–4633 (2020)

7. Cieslewski, T., Kaufmann, E., Scaramuzza, D.: Rapid exploration
withmulti-rotors: A frontier selectionmethod for high speed flight.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2135–2142. IEEE (2017)

8. Dai, A., Papatheodorou, S., Funk, N., Tzoumanikas, D., Leuteneg-
ger, S.: Fast frontier-based information-driven autonomous explo-
ration with an mav. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 9570–9576. IEEE (2020)

9. Dang, T., Mascarich, F., Khattak, S., Nguyen, H., Nguyen, H.,
Hirsh, S., Reinhart, R., Papachristos, C., Alexis, K.: Autonomous
search for underground mine rescue using aerial robots. In: 2020
IEEE Aerospace Conference, pp. 1–8. IEEE (2020)

10. Dang, T., Mascarich, F., Khattak, S., Papachristos, C., Alexis, K.:
Graph-based path planning for autonomous robotic exploration in
subterranean environments. In: 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 3105–3112.
IEEE (2019)

11. DARPA: DARPA Subterranean (SubT) challenge (2020).
https://www.darpa.mil/program/darpa-subterranean-challenge.
Accessed: February 2021

12. Dharmadhikari, M., Dang, T., Solanka, L., Loje, J., Nguyen, H.,
Khedekar, N., Alexis, K.: Motion primitives-based path planning
for fast and agile exploration using aerial robots. In: 2020 IEEE
International Conference on Robotics andAutomation (ICRA), pp.
179–185. IEEE (2020)

13. Dirik, M., Kocamaz, A.F., Dönmez, E.: Visual servoing based
control methods for non-holonomic mobile robot. Journal of Engi-
neering Research 8(2) (2020)

14. Dönmez, E., Kocamaz, A.F.: Design of mobile robot control
infrastructure based on decision trees and adaptive potential area
methods. Iranian Journal of Science and Technology, Transactions
of Electrical Engineering 44(1), 431–448 (2020)

15. Dönmez, E., Kocamaz, A.F., Dirik, M.: Bi-rrt path extraction
and curve fitting smooth with visual based configuration space
mapping. In: 2017 international artificial intelligence and data pro-
cessing symposium (IDAP), pp. 1–5. IEEE (2017)

16. Dönmez, E., Kocamaz, A.F., Dirik, M.: A vision-based real-time
mobile robot controller design based on gaussian function for

indoor environment. Arabian Journal for Science and Engineering
43(12), 7127–7142 (2018)

17. Faria, M., Maza, I., Viguria, A.: Applying frontier cells based
exploration and lazy theta* path planning over single grid-based
world representation for autonomous inspection of large 3d struc-
tures with an uas. J. Intell. Robotic Syst. 93(1–2), 113–133 (2019)

18. Florence, P.R., Carter, J., Ware, J., Tedrake, R.: Nanomap: Fast,
uncertainty-aware proximity queries with lazy search over local
3d data. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 7631–7638. IEEE (2018)

19. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L.,
Tanskanen, P., Pollefeys, M.: Vision-based autonomous map-
ping and exploration using a quadrotor mav. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
4557–4564. IEEE (2012)

20. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Robot Oper-
ating System (ROS): The Complete Reference (Volume 1),
chap. RotorS—A Modular Gazebo MAV Simulator Framework,
pp. 595–625. Springer International Publishing, Cham (2016).
10.1007/978-3-319-26054-9_23

21. Holz, D., Basilico, N., Amigoni, F., Behnke, S.: Evaluating the
efficiency of frontier-based exploration strategies. In: ISR 2010
(41st International Symposium on Robotics) and ROBOTIK 2010
(6th German Conference on Robotics), pp. 1–8. VDE (2010)

22. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard,
W.: Octomap: An efficient probabilistic 3d mapping framework
based on octrees. Autonomous robots 34(3), 189–206 (2013)

23. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning
strategies for autonomous exploration and mapping of unknown
environments. Autonomous Robots 33(4), 427–444 (2012)

24. Kanellakis, C., Mansouri, S.S., Castaño, M., Karvelis, P.,
Kominiak, D., Nikolakopoulos, G.: Where to look: a collection of
methods formav heading correction in underground tunnels. IET
Image Processing 14(10) (2020)

25. Karlsson, S., Koval, A., Kanellakis, C., Nikolakopoulos, G.: d∗+: A
risk aware platform agnostic heterogeneous path planner. Expert
systems with applications p. 119408 (2022)

26. Kim, S.K., Bouman, A., Salhotra, G., Fan, D.D., Otsu, K., Burdick,
J., Agha-mohammadi, A.a.: Plgrim: Hierarchical value learning
for large-scale exploration in unknown environments. In: Proceed-
ings of the International Conference on Automated Planning and
Scheduling, vol. 31, pp. 652–662 (2021)

27. Koval, A., Kanellakis, C., Vidmark, E., Haluska, J., Nikolakopou-
los, G.: A subterranean virtual cave world for gazebobased on the
darpa subt challenge. http://arxiv.org/abs/2004.08452 (2020)

28. Lindqvist, B., Agha-mohammadi, A.a., Nikolakopoulos, G.:
Exploration-rrt: A multi-objective path planning and explo-
ration framework for unknown and unstructured environments.
arXiv:2104.03724 (2021)

29. Lindqvist, B., Haluska, J., Kanellakis, C., Nikolakopoulos, G.: An
adaptive 3d artificial potential field for fail-safe uav navigation. In:
2022 30th Mediterranean Conference on Control and Automation
(MED), pp. 362–367. IEEE (2022)

30. Lindqvist, B., Kanellakis, C., Mansouri, S.S., akbar Agha-
mohammadi, A., Nikolakopoulos, G.: Compra: A compact reactive
autonomy framework for subterranean mav based search-and-
rescue operations (2021)

31. Lindqvist, B., Mansouri, S.S., Agha-mohammadi, A.a., Niko-
lakopoulos, G.: Nonlinear mpc for collision avoidance and control
of uavs with dynamic obstacles. IEEE Robotics and Automation
Letters 5(4), 6001–6008 (2020)

32. Lindqvist, B., Mansouri, S.S., Haluška, J., Nikolakopoulos, G.:
Reactive navigation of an unmanned aerial vehiclewith perception-
based obstacle avoidance constraints. IEEE Transactions on Con-
trol Systems Technology (2021)

123

Page 15 of 17    35

http://arxiv.org/abs/2103.11470
https://github.com/LTU-RAI/MarsLavaTubeWorld.git
https://github.com/LTU-RAI/MarsLavaTubeWorld.git
https://www.darpa.mil/program/darpa-subterranean-challenge
http://arxiv.org/abs/2004.08452
http://arxiv.org/abs/2104.03724


Journal of Intelligent & Robotic Systems (2023) 108:35 

33. Mansouri, S.S., Kanellakis, C., Fresk, E., Kominiak, D., Niko-
lakopoulos, G.: Cooperative uavs as a tool for aerial inspection of
the aging infrastructure. In: Field and Service Robotics, pp. 177–
189. Springer (2018)

34. Matthies, L., Brockers, R., Kuwata, Y., Weiss, S.: Stereo vision-
based obstacle avoidance for micro air vehicles using disparity
space. In: 2014 IEEE international conference on robotics and
automation (ICRA), pp. 3242–3249. IEEE (2014)

35. Moravec, H., Elfes, A.: High resolution maps from wide angle
sonar. In: Proceedings. 1985 IEEE international conference on
robotics and automation, vol. 2, pp. 116–121. IEEE (1985)

36. Nikolakopoulos, G., Agha, A.: Pushing the limits of autonomy for
enabling the next generationof space robotics explorationmissions.
Computer 54(11), 100–103 (2021)

37. Özaslan, T., Loianno, G., Keller, J., Taylor, C.J., Kumar, V.,Wozen-
craft, J.M., Hood, T.: Autonomous navigation and mapping for
inspection of penstocks and tunnels with mavs. IEEE Robotics and
Automation Letters 2(3), 1740–1747 (2017)

38. Patel, A., Banerjee, A., Lindqvist, B., Kanellakis, C., Nikolakopou-
los, G.: Design and model predictive control of mars coaxial
quadrotor (2021)

39. Patel, A., Banerjee, A., Lindqvist, B., Kanellakis, C., Nikolakopou-
los, G.: Design and model predictive control of mars coaxial
quadrotor. arXiv:2109.06810 (2021)

40. Patel, A., Lindqvist, B., Kanellakis, C., Nikolakopoulos, G.: Fast
planner for mav navigation in unknown environments based on
adaptive search of safe look-ahead poses. In: 2022 30th Mediter-
ranean Conference on Control and Automation (MED), pp. 545–
550 (2022). 10.1109/MED54222.2022.9837293

41. Peltzer, O., Bouman, A., Kim, S.K., Senanayake, R., Ott, J.,
Delecki, H., Sobue, M., Kochenderfer, M., Schwager, M., Burdick,
J., et al.: Fig-op: Exploring large-scale unknown environments on
a fixed time budget. arXiv:2203.06316 (2022)

42. Pito, R.: A solution to the next best view problem for automated
surface acquisition. IEEE Transactions on pattern analysis and
machine intelligence 21(10), 1016–1030 (1999)

43. Reinhart, R., Dang, T., Hand, E., Papachristos, C., Alexis, K.:
Learning-based path planning for autonomous exploration of sub-
terranean environments. In: 2020 IEEE International Conference
onRobotics andAutomation (ICRA), pp. 1215–1221. IEEE (2020)

44. Ryll, M., Ware, J., Carter, J., Roy, N.: Efficient trajectory planning
for high speed flight in unknown environments. In: 2019 Interna-
tional conference on robotics and automation (ICRA), pp. 732–738.
IEEE (2019)

45. Selin, M., Tiger, M., Duberg, D., Heintz, F., Jensfelt, P.: Efficient
autonomous exploration planning of large-scale 3-d environments.
IEEE Robotics and Automation Letters 4(2), 1699–1706 (2019)

46. Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3d explo-
ration with a micro-aerial vehicle. In: 2012 IEEE international
conference on robotics and automation, pp. 9–15. IEEE (2012)

47. Small, E., Sopasakis, P., Fresk, E., Patrinos, P., Nikolakopoulos,
G.: Aerial navigation in obstructed environments with embedded
nonlinearmodel predictive control. In: 2019 18thEuropeanControl
Conference (ECC), pp. 3556–3563. IEEE (2019)

48. Sopasakis, P., Fresk, E., Patrinos, P.: Open: Code generation for
embedded nonconvex optimization. IFAC-PapersOnLine 53(2),
6548–6554 (2020)

49. Tordesillas, J., Lopez, B.T., Everett, M., How, J.P.: Faster: Fast and
safe trajectory planner for navigation in unknown environments.
IEEE Transactions on Robotics (2021)

50. Viswanathan, V.K., Satpute, S.G., Lindqvist, B., Kanellakis, C.,
Nikolakopoulos, G.: Experimental evaluation of a geometry-aware
aerial visual inspection frameworkin a constrained environment. In:

2022 30th Mediterranean Conference on Control and Automation
(MED), pp. 468–474. IEEE (2022)

51. Warren, C.W.: Global path planning using artificial potential fields.
In: 1989 IEEE International Conference on Robotics and Automa-
tion, pp. 316–317. IEEE Computer Society (1989)

52. Williams, J., Jiang, S., O’Brien, M., Wagner, G., Hernandez, E.,
Cox, M., Pitt, A., Arkin, R., Hudson, N.: Online 3d frontier-based
ugv and uav exploration using direct point cloud visibility. In: 2020
IEEE International Conference onMultisensor Fusion and Integra-
tion for Intelligent Systems (MFI), pp. 263–270. IEEE (2020)

53. Xu, Z., Deng, D., Shimada, K.: Autonomous uav exploration of
dynamic environments via incremental sampling and probabilistic
roadmap. IEEE Robotics and Automation Letters 6(2), 2729–2736
(2021)

54. Yamauchi, B.: A frontier-based approach for autonomous explo-
ration. In: Proceedings 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics
and Automation’, pp. 146–151. IEEE (1997)

55. Yamauchi, B.: Frontier-based exploration using multiple robots.
In: Proceedings of the second international conference on
Autonomous agents, pp. 47–53 (1998)

56. Zhang, J., Hu, C., Chadha, R.G., Singh, S.: Maximum likelihood
path planning for fast aerial maneuvers and collision avoidance.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2805–2812. IEEE (2019)

57. Zhou, B., Zhang, Y., Chen, X., Shen, S.: Fuel: Fast uav exploration
using incremental frontier structure and hierarchical planning.
IEEE Robotics and Automation Letters 6(2), 779–786 (2021)

58. Zhu, C., Ding, R., Lin, M., Wu, Y.: A 3d frontier-based explo-
ration tool for mavs. In: 2015 IEEE 27th International Conference
on Tools with Artificial Intelligence (ICTAI), pp. 348–352. IEEE
(2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Akash Patel is currently pursuing his PhD at the Robotics and AI
team of the Luleå University of Technology, Sweden. His current
research direction is focused on developing exploration and mapping
algorithms to enable autonomous exploration of caves, lava tubes and
voids of the planetary bodies. Akash received his master’s degree in
Space Science and Technology from Luleå University of Technology,
Sweden and bachelor’s degree in aerospace engineering from UPES,
India.

Björn Lindqvist is currently pursuing his PhD at the Robotics and AI
Team at the Department of Computer Science, Electrical and Space
Engineering, Luleå University of Technology, Sweden, working in the
field of aerial robotics. He received his Master’s Degree in Space Engi-
neering with a specialisation Aerospace Engineering from Luleå Uni-
versity of Technology, Sweden, in 2019. Björn’s research has so far
been focused on collision avoidance and path planning for single and
multi-agent Unmanned Aerial Vehicle systems, as well as field appli-
cations of such technologies. He has worked as part of the JPL-NASA
led Team CoSTAR in the DARPA Sub-T Challenge on subterranean
UAV exploration applications, specifically in the search-and-rescue
context.

123

35 Page 16 of 17

http://arxiv.org/abs/2109.06810
http://arxiv.org/abs/2203.06316


Journal of Intelligent & Robotic Systems (2023) 108:35 

Christoforos Kanellakis received the Ph.D. degree from the Control
Engineering Group, Luleå University of Technology (LTU), Sweden,
and the Diploma degree from the Department of Electrical and Com-
puter Engineering, University of Patras (UPAT), Greece, in 2015. He is
currently a Postdoctoral Researcher with the Department of Computer
Science, Electrical and Space Engineering, LTU. He also works in the
field of robotics, focusing on the combination of control and vision to
enable robots perceive and interact with the environment.

Ali-akbar Agha-mohammadi is a robotics research technologist with
NASA’s Jet Propulsion Laboratory (JPL), Caltech. Previously, he was
an autonomy research engineer with Qualcomm Research and a post-
doctoral researcher with the Laboratory for Information and Decision
Systems at Massachusetts Institute of Technology. He received his
Ph.D. from Texas A&M University, and his research interests include
robotic autonomy, mobility and perception, stochastic control systems
and filtering theory. Agha manages several projects at JPL on auton-
omy, control and perception for robotic systems (rovers and aerial
vehicles). He was selected as a NASA NIAC Fellow in 2018.

George Nikolakopouloswas working as a Project Manager and a Prin-
cipal Investigator in several R&D&I projects funded by the EU, ESA,
Swedish, and the Greek National Ministry of Research. In 2013, he
has established the bigger outdoors motion capture systems in Swe-
den, and most probably in Europe, as part of the FROST Field
Robotics Laboratory, Luleå University of Technology, Luleå, Swe-
den. He is currently a Professor on robotics and automation with the
Department of Computer Science, Electrical and Space Engineering,
Luleå University of Technology. His work is focusing in the area of
robotics and control applications, while he has a significantly large
experience in creating and managing European and National Research
Projects. He is the Coordinator of H2020-ICT AEROWORKS project
in the field of aerial collaborative UAVs and H2020-SPIRE project
DISIRE in the field of integrated process control. His published sci-
entific work includes more than 150 published international journals
and conferences in the fields of his interest. In 2003, he has received
the Information Societies Technologies (IST) Prize Award for the Best
Paper that promotes the scopes of the European IST (currently known
as ICT) sector. In 2014, he has received the 2014 Premium Award for
Best Paper in IET Control Theory and Applications, (Elsevier) for the
research work in the area of UAVs. In 2014, he has been nominated
as a LTU’s Wallenberg candidate, one out of three nominations from
the University and 16 in total engineering nominations in Sweden. His
publications in the field of UAVs have received top recognition from
the related scientific community, while have been several times listed
in the TOP 25 most popular publications in Control Engineering Prac-
tice (Elsevier).

George Nikolakopoulos is acting Chair on Robotics and AI, a Pro-
fessor on Robotics and Automation at the Department of Computer
Science, Electrical and Space Engineering at Luleå University of Tech-
nology. His work is focusing in the area of Robotics, Control Applica-
tions and Cyberphysical Systems. His published scientific work
includes more than 150 published International Journals and Confer-
ences in the field. He has been Associate Editor and Reviewer of
Several International Journals and Conferences, as well as a member
of the ARTEMIS scientific Council in the European Commission.

123

Page 17 of 17    35


	REF: A Rapid Exploration Framework for Deploying Autonomous MAVs in Unknown Environments
	Abstract
	1 Introduction and Background
	1.1 Related Works
	1.2 Motivation

	2 Problem formulation
	2.1 Contributions

	3 Proposed approach
	3.1 Supportive Autonomy Modules

	4 Exploration Mission Experiments
	5 Conclusions
	References




